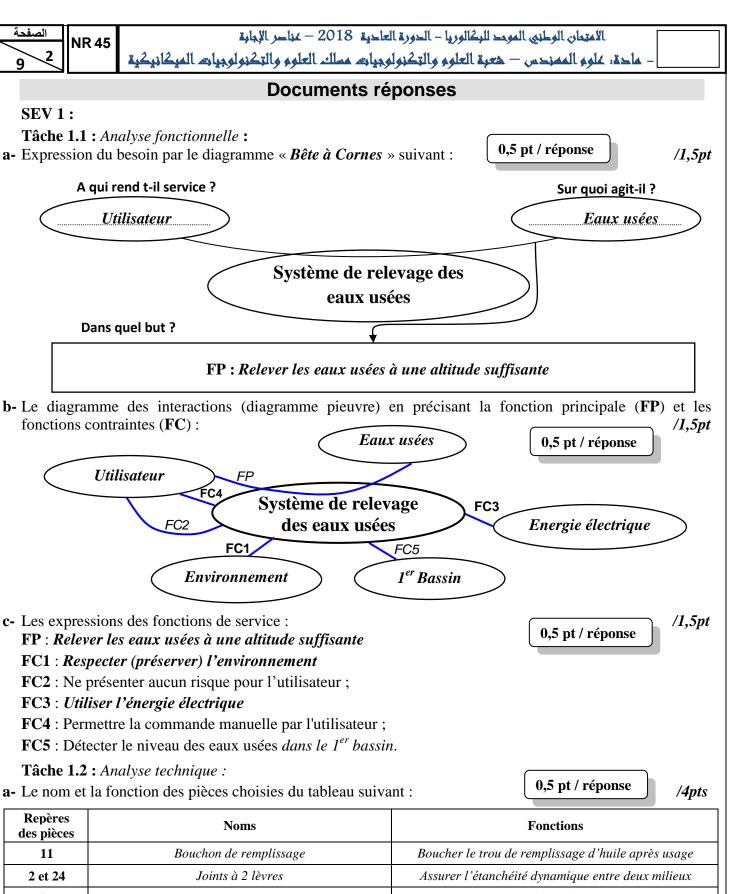


الامتحان الوطني الموحد للبكالوريا

الدورة العادية 2018 -عناصر الاجابة-

NR 45

المركز الوطني للتقويم والإمتحانات والتوحيه

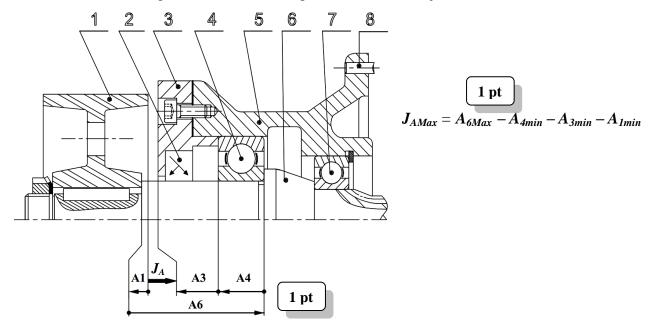

XXX

7	مدة الإنجاز	علوم المهندس	المادة
7	المعامل	شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية	الشعبة أو المسلك

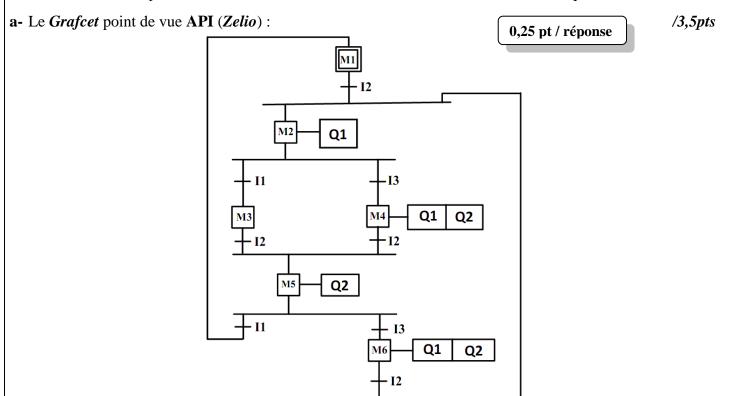
ÉLÉMENTS DE CORRECTION

<u>N.B</u>

Le correcteur est tenu de respecter à la lettre les consignes relatives aux répartitions des notes indiquées sur les éléments de correction


Repères des pièces	Noms	Fonctions		
11	Bouchon de remplissage	Boucher le trou de remplissage d'huile après usage		
2 et 24	Joints à 2 lèvres Assurer l'étanchéité dynamique entre de			
27	Bouchon de vidange	Boucher le trou de vidange après usage		
36	Roulement à une rangée de billes à contact oblique	Assurer le guidage en rotation de 25 par rapport à 21		

b- Le nom de la liaison, son symbole et son nombre de degrés de liberté donnés par le tableau suivant : /2pts

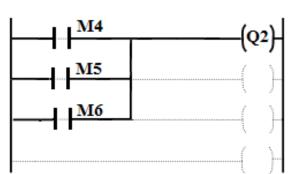

La liaison	Nom de la liaison	Symbole normalisé	0,25 pt / réponse egrés de liberté		
La Haison	Nom de la maison	de la liaison	T	R	
1/6	Complète démontable		0	0	
6/5	Pivot	THE	0	1	

الامتدان الوطني الموحد للبكالوريا – الدورة العادية 2018 – عناصر الإجابة والمحدد البكالوريا – الدورة العادية العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية علوم الممندس – معبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

c- Le tracé, en négligeant le jeu interne des roulements, de la chaîne de cotes minimale relative au jeu fonctionnel (J_A) de la figure ci-dessous et l'expression littérale du jeu maximal noté J_{AMax} : /2pts

Tâche 1.3 : Étude partielle de l'automatisme de commande des deux moteurs électriques M1 et M2 :

b- Le tableau des équations d'activation et de désactivation des étapes :


0,25 pt /	réponse
-----------	---------

/1,5pt

Etapes	Equation d'activation	Equation de désactivation		
Etape 1	M5.I1	m2		
Etape 2	<i>I2(M1+M6)</i>	<i>m</i> 3+ <i>m</i> 4		
Etape 3	M2.I1	m5		
Etape 4	M2.I3	m5		
Etape 5	I2(M3+M4)	m1+m6		
Etape 6 <i>M5.I3</i>		m2		

الصفحة الصفحة	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 – غناصر الإجابة
الصفحة NR 4:	_ مادة: عُلُومُ المُمنِّدُسُ — شَعَرِةُ العَلُومُ والتِّكْنُولُوجِياتِ مسلك العلومِ والتِّكْنُولُوجِياتِ الميكانيكية
9	

c- Le programme en langage LADDER de la bobine KM2 :

0,5 pt / branche

/1.5pt

SEV 2:

Tâche 2.1 : Choix du moteur électrique asynchrone triphasé en se basant sur les exigences et les données du cahier des charges DRES page 15/17.

On va considérer que <u>chaque pas</u> de la vis contient <u>le même volume élémentaire</u> **Ve** d'eau usée et que ce volume monte dans l'auge **38** suivant l'axe de la vis (**DRES pages 12/17 et 13/17**).

N.B: Pour cette Tâche 2.1, prendre 2 chiffres après la virgule dans les calculs qui suivent.

a- Calcul, en tenant compte du volume élémentaire Ve, de la fréquence de rotation Nv (en tr/min) avec laquelle la vis 25 doit tourner afin de respecter le débit maximal $Q_M = 680 \text{ l/s} = 680 \text{ dm}^3/\text{s}$: //pt

$$Q_M = V_e.rac{N_v}{60}$$

Donc la vitesse de la vis 25 : $N_v = rac{60.Q_M}{V_e} = rac{60.680}{869} = 46,95 \ tr/min$

b- Détermination, en tenant compte du pas P de la vis, de la vitesse V (en m/s) de déplacement de l'eau, supposée constante suivant l'axe de la vis 25, en prenant la fréquence de rotation Nv = 47 tr/min : //pt

$$V = \frac{N_v \cdot P}{60} = \frac{47 \times 600 \cdot 10^{-3}}{60} = 0,47 \ m/s$$

Afin de déterminer la puissance nécessaire sur le bout le bout d'entrée de la vis 25 :

c- Détermination du nombre de pas $\mathbf{n_p}$ le long de l'hélice de la vis $\mathbf{25}$ en tenant compte de sa longueur $\mathbf{L}:/\mathbf{1pt}$

$$n_p = \frac{L}{p} = \frac{12,24}{600.10^{-3}} = 20,4$$

d- Déduction, en tenant compte du volume élémentaire Ve et en prenant $\mathbf{n_p} = 20,4$, du volume total V_t (en m^3) d'eau usée mis en mouvement par la vis 25 dans son auge 38:

$$V_t = V_e$$
. $n_p = 869 \times 10^{-3} \times 20, 4 = 17,72 \text{ m}^3$

e- Calcul de la puissance utile Pu (en kW) pour élever, suivant l'axe de la vis 25, le volume total V_t en tenant compte de l'inclinaison α de la vis (prendre V=0, 47 m/s et $V_t=17$, 72 m^3):

$$P_u = V_t \cdot \rho \cdot g \cdot V \cdot \sin \alpha = 17,72 \times 10^3 \times 9,81 \times 0,47 \times \sin 35^\circ = 46,86 \text{ kW}$$

f- Détermination, en prenant $\mathbf{Pu} = \mathbf{47} \ \mathbf{kW}$, de la puissance \mathbf{Pv} (en \mathbf{kW}) nécessaire sur le bout d'entrée de la vis **25**, en tenant compte du rendement $\eta_V = 0.65$ de celle-ci : /0.5pt

$$P_v = \frac{P_u}{\eta_v} = \frac{47}{0.65} = 72.30 \ kW$$

الصفحة	
9 5	

NR 45

Pour choisir le moteur adéquat :

g- Déduction de la puissance P_{re} (en kW) nécessaire à l'entrée du réducteur (pignon arbré 6), en tenant compte du rendement η_{acc} de l'accouplement élastique et celui du réducteur η_r et en prenant $P_v = 72,30$ kW: 0,5pt

$$P_{re} = \frac{P_v}{\eta_{acc} \times \eta_r} = \frac{72,30}{0,92 \times 0,97} = 81,01 \text{ kW}$$

h- Calcul de la puissance mécanique Pm (en kW) utile sur l'arbre du moteur en tenant compte du rendement η_{pc} du système poulies-courroie : /0,5pt

$$P_m = \frac{P_{re}}{\eta_{nc}} = \frac{81,01}{0,95} = 85,27 \ kW$$

i- Calcul de la vitesse de rotation Nm (en tr/min) du moteur permettant de donner à la vis 25 la vitesse de rotation Nv = 47 tr/min :

$$k \times \frac{Dp}{Dr} = \frac{N_V}{N_m} = \frac{1}{31.5} \times 1$$
 donc $N_m = N_V \times 31, 5 = 47 \times 31, 5 = 1480, 5$ tr/min

j- Choix, en donnant la désignation à partir du **DRES page 16/17**, du moteur convenable qui va fournir à la vis d'Archimède **25** la puissance et la vitesse nécessaires : /0,5pt

Le moteur à choisir est celui de la désignation suivante : LS 280 MP qui donne 90 kW à 1482 tr/min.

Tâche 2.2 : Vérification de la résistance et de la rigidité à la torsion de l'arbre **15**, selon les données suivantes :

L'arbre 15 est assimilé à une poutre cylindrique pleine de diamètre d_{15} , soumise à un moment de torsion Mt = 15970 N.m. L'arbre 15 est en acier pour lequel Reg = 245 MPa (N/mm²). On prend pour cette construction un coefficient de sécurité s = 3 et un coefficient de concentration des contraintes $k_t = 1,6$.

N.B: Pour cette Tâche 2.2, prendre 2 chiffres après la virgule dans les calculs qui suivent.

a- La condition de résistance à la torsion dans une section droite de l'arbre **15** : /0,5pt

$$\zeta_{max} \leq \frac{R_{eg}}{s}$$

b- Détermination du diamètre minimal **d**_{15min} (en mm), de l'arbre **15** :

$$\zeta_{max} = \frac{k_{ts} \times M_t}{I_0} \times \frac{d_{15}}{2} = \frac{16 \times k_{ts} \times M_t}{\pi \times d_{15}^3} \leq \frac{R_{eg}}{s}$$

$$donc \ d_{15} \ge \sqrt[3]{\frac{16 \times k_{ts} \times M_t \times s}{\pi \times R_{eg}}}$$

$$d_{15} \ge \sqrt[3]{\frac{16 \times 1, 6 \times 15970 \times 10^3 \times 3}{\pi \times 245}} = 116,80 \ mm$$

الصفحة	ND 45
6	NR 45

الاعتمان الوطني المومد للبكالوريا – الدورة العادية 2018 – عناصر الإجابة

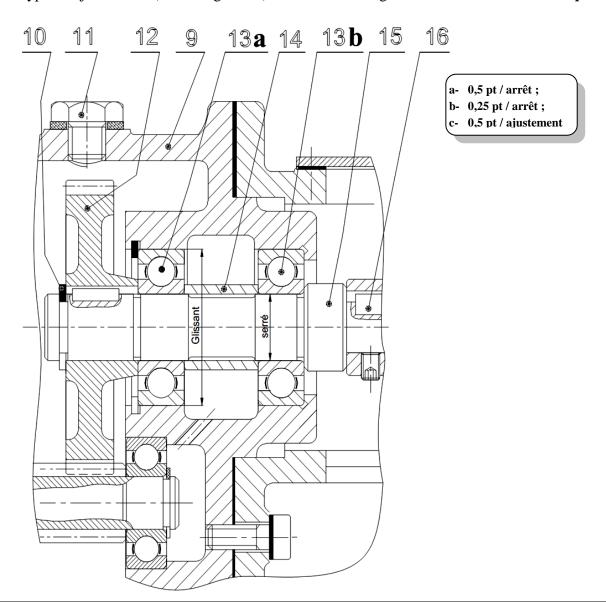
- مادة: عُلُوهِ المُمنِدس — شعبة العلومِ والتَّكْنُولُوجِياتِ مُسَاكُ الْعَلُومِ وَالتَّكْنُولُوجِياتِ الْمَيْكَانِيكِية

c- Calcul de l'angle unitaire de torsion θ_{15} (en **rad/mm**), en prenant $\mathbf{d}_{15} = 117$ **mm** et sachant que le module d'élasticité transversal de l'arbre 15 est G = 80000 MPa : //pt

$$\theta_{15} = \frac{M_t}{G.I_0} = \frac{32 \times 15970 \times 10^3}{80000 \times \pi \times 117^4} = 1,08.10^{-5} \, rad/mm$$

d- La condition de rigidité à la torsion de l'arbre 15 :

$$\theta_{15} \leq \theta_{limite}$$


e- Conclusion sur la rigidité de l'arbre 15, si $\theta_{limite} = 1,3.10^{-5} \ rad/mm$:

/1pt

La condition de rigidité à la torsion de l'arbre 15 est respectée car $\theta_{15} \leq \theta_{limite}$

Tâche 2.3 : Représentation graphique du guidage en rotation de l'arbre 15 par rapport au carter 9 :

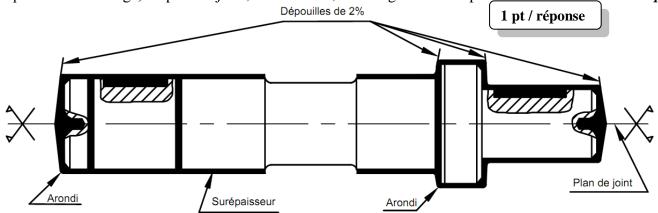
- a- Représentation des arrêts en translation des bagues extérieures des roulements 13a et 13b; /2pts
- **b-** Représentation des arrêts en translation des bagues intérieures des roulements **13a** et **13b**; /2pts
- c- Mise en place des types d'ajustements (serré ou glissant) relatifs au montage de ces deux roulements. /1pt

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 – عباحر الإجابة و 102 – عباحر الإجابة علوم الممنحس — متعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

SEV 3:

Tâche 3.1:

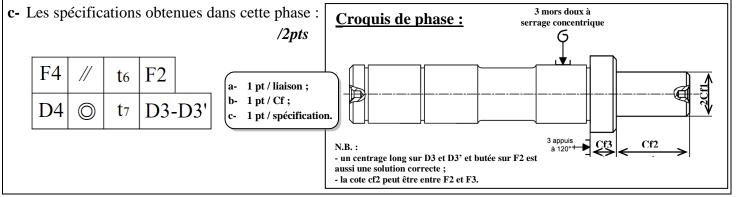
a- Identification et explication de la désignation du matériau de l'arbre 15 :


/2pts

C40 Forgé: acier non allié forgé et contenant 0,4% de Carbone.

[1 pt]

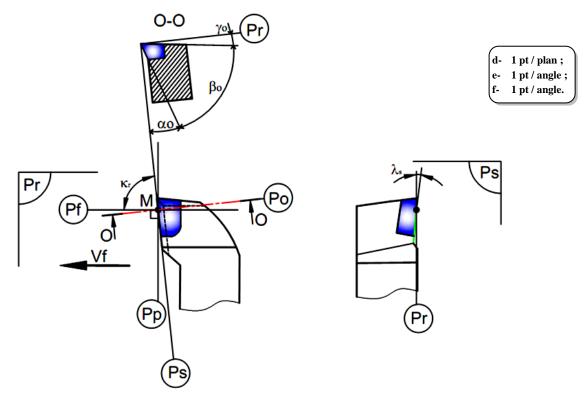
Symbole	Signification	Type de tolérance	
工	Perpendicularité	Orientation	
//	Parallélisme	Orientation	
=	Symétrie	Position	
0	Coaxialité	Position	


c- Le dessin du brut capable de l'arbre **15**, sachant qu'il est obtenu par estampage, par l'indication des surépaisseurs d'usinage, du plan de joint, des arrondis, des congés et des dépouilles : /5pts

- **d-** Citation de deux avantages de l'estampage qui est le procédé d'élaboration de brut de <u>l'arbre 15</u>: /2pts ✓ Qualité dimensionnelle obtenue 9 à 11 ;
 - ✓ Caractéristiques mécaniques accrues par rapport à celles du matériau d'origine, car ce procédé améliore la compacité et provoque « un fibrage » dans les pièces.

Tâche 3.2 : Étude de la phase 20. Sur le croquis, ci-dessous, relatif à la phase 20, par :

- a- Mise en place des symboles technologiques (2ème norme) permettant la mise et le maintien en position de l'arbre 15 en montage en l'air sur mandrin à mors doux.
- **b-** Installation, en négligeant les chanfreins et le centrage, des cotes fabriquées (sans valeurs) réalisées dans cette phase. /3pts


الامتحان الوطني الموحد للبثالوريا – الدورة العادية 2018 – عناصر الإجابة عادة: علوم الممندس – متعبة العلوم والتثنولوجيات مسلك العلوم والتثنولوجيات الميثانيثية

Tâche 3.3 : Étude de l'outil de réalisation de (D4, F4). Sur le croquis ci-dessous installer :

a- Les plans de l'outil, référentiel en main, (Pr, Ps, Pf, Po et Pp); /5pts

b- Les angles de faces orthogonaux $(\alpha_0, \beta_0, \gamma_0)$; /3pts

c- L'angle de direction d'arête **Kr** et l'angle d'inclinaison d'arête λ**s**. /2pts

Tâche 3.4 : Étude de la coupe afin de valider la machine choisie pour réaliser l'ébauche de D_2 , sachant que celle-ci développe, au niveau de son moteur, une puissance Pm = 5,5 KW, son rendement $\eta = 0,8$ et que la profondeur de passe a = 3mm, l'avance par tour f = 0,1mm/tr, la vitesse de coupe Vc = 210m/min et la pression spécifique du matériau usiné $kc = 400 \ daN/mm^2$.

a- Calcul de l'effort tangentiel de coupe **Fc** (en **N**):

$$Fc = kc \times a \times f$$

 $Fc = 4000 \times 3 \times 0.1 = 1200 \text{ N}$

b- Détermination de la puissance de coupe **Pc** (en **W**) : // Ipt

$$Pc = Fc \times Vc$$

 $Pc = 1200 \times 210/60 = 4200 \text{ W}$

c- Déduction de la puissance P_{mf} (en kW) à fournir par le moteur de la machine : // Ipt

$$\eta = Pc / P_{mf} \quad donc \quad P_{mf} = Pc / \eta$$

$$P_{mf} = 4200 / 0.8 = 5.250 \text{ KW}$$

La machine choisie est valide

	الصفحة	ND 45	الامتحان الوطني الموجد للبكالوريا – الدورة العادية 2018 – بجاحر الإجابة
ſ	\ a	NR 45	الامتمان الوطني الموحد للبكالوريا – الدورة العادية 2018 – عناصر الإجابة – ماحة: علوم المصندس – متعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية
L	9 🔍		– هاكة: علوم المهندس — هعبة العلوم والتُكنولوجيات مسلك العلوم والتُكنولوجيات الميكانيكية

Tâche 3.5:

Vérification de la capabilité du procédé de fabrication du diamètre $D4 = \emptyset 89^{-0.012}_{-0.034}$ de l'arbre 15 (DRES

On donne le tableau suivant des moyennes \bar{X} et des étendues R relatives aux huit premiers échantillons relevés:

\overline{X}	88,977	88,976	88,975	88,976	88,975	88,977	88,976	88,976
R	0,005	0,003	0,011	0,005	0,005	0,007	0,004	0,008

a- Calcul des dimensions maximale $D_{Max}(Ts)$ et minimale $D_{min}(Ti)$ du diamètre D4 :

/1pt

 D_{Max} = dimension nominale + l'écart supérieur = 89 + (-0,012)= 88,988 mm

 $D_{Maxi} = 88,988 \ mm$ 0,5 pt

 D_{min} = dimension nominale + l'écart inférieur = 89 + (-0,034) = 88,966 mm

 $D_{mini} = 88,966 \ mm \ [0,5 \ pt]$

b- Calcul pour les huit échantillons la moyenne des moyennes \overline{X} et la moyenne des étendues \overline{R} : /2pts

$$\overline{\overline{X}} = \sum_{0}^{8} \frac{88,977+88,976+88,975+88,976+88,975+88,977+88,976+88,976}{8} = \textit{88,976} \ \textit{mm}$$

 $\overline{X} = 88.976 \ mm$ 1 pt

$$\overline{R} = \sum_{0}^{8} \frac{0,005 + 0,003 + 0,011 + 0,005 + 0,005 + 0,007 + 0,004 + 0,008}{8} = \textit{0,006 mm}$$

 $\overline{\mathbf{R}} = 0.006 \ mm$

c- Calcul de l'écart-type estimé $\sigma_{\text{estimé}}$ sachant que dn = 2,326 et $\sigma_{\text{estimé}} = \frac{R}{d_n}$:

/1pt

$$\sigma_{estim\acute{e}} = \frac{\overline{R}}{dn} = \frac{0,006}{2,326} = 2,58 \times 10^{-3}$$

d- Calcul des indicateurs de capabilité Cp et Cpk:

/2pts

On donne:
$$Cp = \frac{D_{Max} - D_{min}}{6 \sigma_{estim\acute{e}}}$$
 et $Cpk = Mini \left[\frac{\bar{X} - D_{min}}{3 \sigma_{estim\acute{e}}}; \frac{D_{Max} - \bar{X}}{3 \sigma_{estim\acute{e}}} \right] = Mini \left[Cpki ; Cpks \right]$

$$Cp = \frac{D_{Maxi} - D_{mini}}{6 \sigma estim\acute{e}} = \frac{88,988 - 88,966}{6 \times 2,58 \times 10^{-3}} = \frac{0,022}{0,01548} = 1,42$$

$$Cp = 1,42.$$
 1 pt

$$Cpk = Mini \left[\frac{88,976-88,966}{3 \times 2,58 \times 10^{-3}}; \frac{88,988-88,976}{3 \times 2,58 \times 10^{-3}} \right]$$

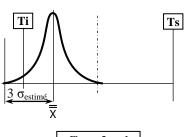
$$Cpki = 1,29$$

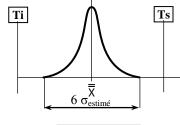
$$Cpks = 1,55$$

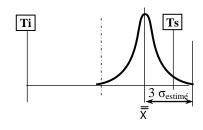
$$Cnk = 1.29$$
 1 pt

e- Comparaison des indicateurs Cp et Cpk avec la valeur minimale admise et conclusion :

/2pts


$$Cp = 1.42 > 1.33$$
 1 pt $Cnk = 1.29 < 1.33$


$$Cpk = 1,29 < 1,33$$


Donc le procédé est capable mais mal réglé | 1 pt

f- Déduction, parmi les trois courbes de Gauss suivantes, la courbe qui correspond aux résultats de Cp et Cpk trouvés précédemment : /1pt

La courbe qui correspond aux résultats trouvés de Cp et Cpk c'est <u>la courbe 1</u>.

Courbe 1 Courbe 2

Courbe 3