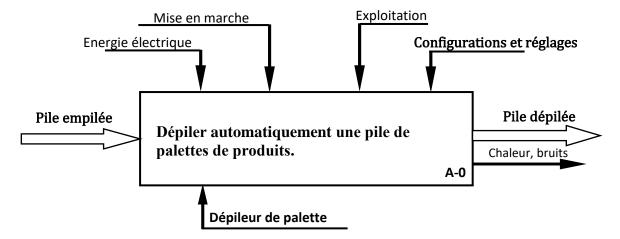
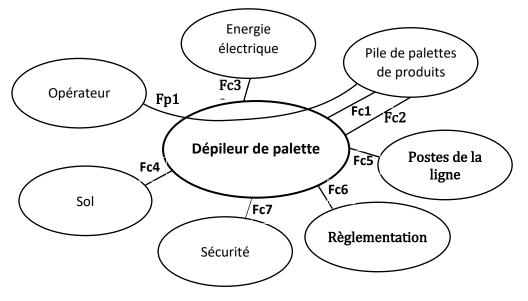


Dépileur de palettes.

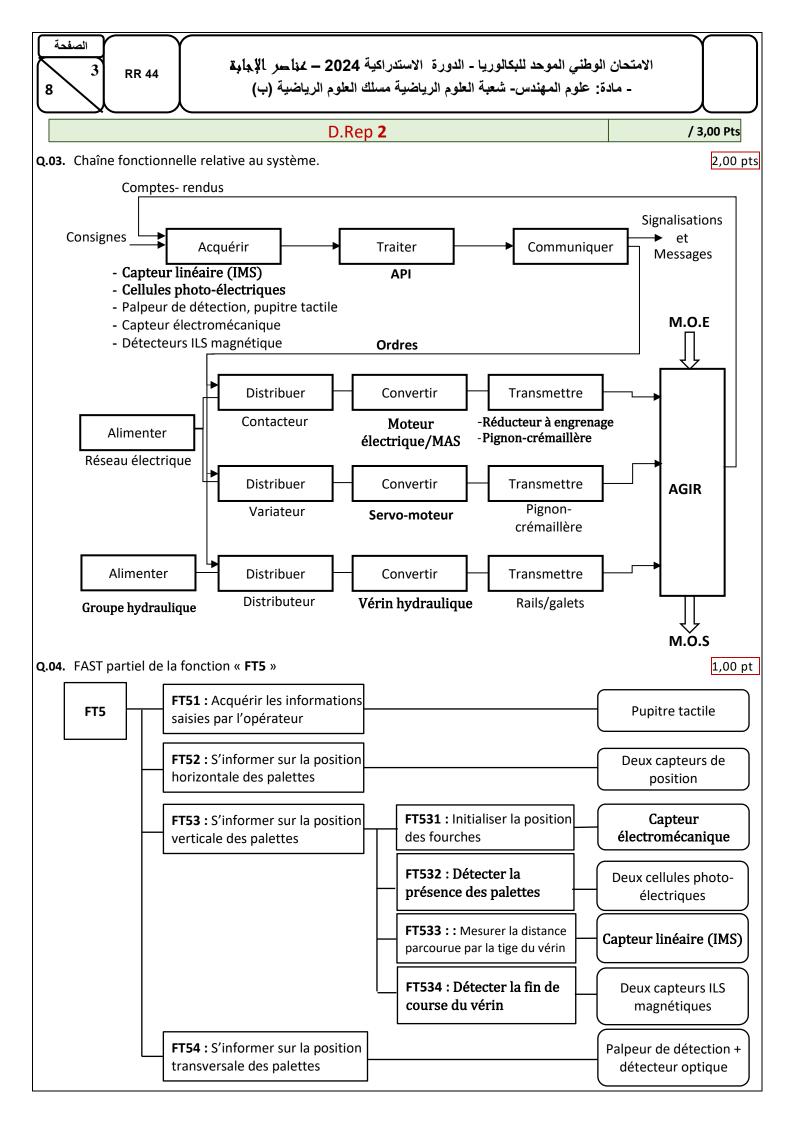
Eléments de réponse



D.Rep **1** /3,00 Pts


Q.01. Actigramme A-0.

1,00 pts



Q.02. Diagramme des interactions et liste des fonctions de services.

2,00 pts

Fs	Identification		
Fp1	Dépiler automatiquement une pile de palettes de produits sur des palettes.		
Fc1	S'adapter aux dimensions des palettes.		
Fc2	Être adapté aux charges requises.		
Fc3	Être alimenté en énergie électrique.		
Fc4	Être stable et solidaire au sol.		
Fc5	S'intégrer aux postes de la ligne de convoyage.		
Fc6	Être conforme à la réglementation spécifique aux équipements de levage.		
Fc7	Respecter les normes de sécurité.		

RR 44

الامتحان الوطنى الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم الرياضية مسلك العلوم الرياضية (ب)

> D.Rep 3 /4,00 Pts

Q.05. Solution technologique utilisée pour réaliser la liaison (L3) :

0,25 pts

Palier à roulement

Q.06. Fonction du système {(P), (C)}

0,25 pts

Fonction: Transformer le mouvement de rotation en mouvement de translation

Q.07. Tableau relatif au système {(P),(C)}.

0,50 pts

Rotation de (P)	Translation de (P)	Potation do (C)	otation de (C) Translation de (C)	Système {(P),(C)}	
Rotation de (F)	Translation de (P)	Rotation de (C)		Réversible	Irréversible
X	X			×	

Q.08. Calcul de la vitesse de rotation de N_P (en tr/min) du pignon (P), sachant que $V_{MH} = 0.35$ m/s.

0,25 pts

On a:
$$N_P = \frac{30.\omega_P}{\pi}$$

on sait que : $V_C = \frac{D_P}{2}$. $\omega_P \Rightarrow \omega_P = \frac{2.V_C}{D_P} = \frac{2.V_C}{Z_P.m}$ donc : $N_P = \frac{30.2.V_C}{\pi.Z_P.m}$

A.N:
$$N_P = \frac{30 \times 2 \times 0.35}{\pi \times 25 \times 6 \times 10^{-3}}$$
 donc: $N_P = 44,56$ tr/min

Q.09. Calcul du rapport de réduction globale du réducteur r_g . (Prendre quatre chiffres après la virgule)

0,25 pts

$$r_g = \frac{z_{21} \cdot z_{23}}{z_{22} \cdot z_{24}}$$

$$AN : r_g = \frac{10 \times 10}{40 \times 80}$$

AN: $r_g = \frac{10 \times 10}{40 \times 80}$ donc: $r_g = 0.0313$

Q.10. Calcul de la vitesse de rotation du moteur N_m (en tr/min).

0,25 pts

$$r_g = \frac{N_P}{N_m}$$

$$N_{\rm m} = \frac{N_{\rm F}}{r_{\rm o}}$$

 $r_g = \frac{N_P}{N_m} \qquad donc: \qquad N_m = \frac{N_P}{r_g} \qquad \qquad AN: \qquad N_m = \frac{44,56}{0,0313} \ \Rightarrow \ N_m = 1423.\,64 \ tr/min$

Q.11. Calcul de la puissance Pc (en W) développée par le système {(P),(C)}

0,25 pts

0,25 pts

$$P_C = F_t \cdot V_C$$

$$AN: P_C = 2800 \times 0.35 \quad \Rightarrow \quad P_C = 980 W$$

Le moteur choisi est de type : LS 90 SL $\;\;\;$ avec $\;\;\;P_n=1100~W>\;P_m=1052,19~W$

Q.12. Calcul de la puissance fournie par le moteur P_m (en W).

$$\eta_{g} = \frac{P_{C}}{P_{m}} \Rightarrow P_{m} = \frac{P_{C}}{\eta_{g}} \Rightarrow P_{m} = \frac{P_{C}}{\eta_{pc} \cdot \eta_{p} \cdot \eta_{r}}$$

$$AN: P_{m} = \frac{980}{0.98 \times 0.99 \times 0.96} \Rightarrow P_{m} = 1052, 19 \text{ W}$$

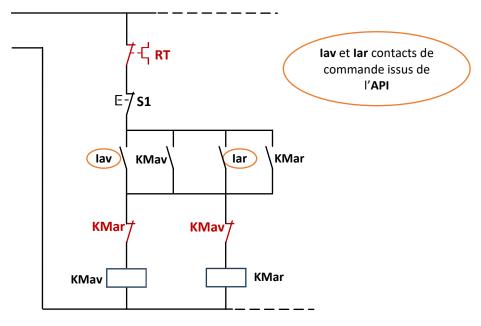
Q.13. Le type du moteur adéquat.

0,25 pts

Q.14. Tableau des éléments du circuit de puissance.

1,50 pts

Élément	Nom	Fonction Adapter/Abaisser la tension. Protéger le moteur contre les surcharges Eviter le fonctionnement simultané des deux contacteurs	
т	Transformateur		
RT	Relais thermique		
<i>-</i> √-	Verrouillage mécanique		



الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم الرياضية مسلك العلوم الرياضية (ب)

D.Rep **4** /2,50 Pts

Q.15. Le contact adéquat sur le circuit de commande.

0,75pts

Q.16. La valeur de la tension V3 (en V) à l'entrée du transformateur.

 $m = \frac{V}{V_3}$ \Rightarrow $V_3 = \frac{V}{m} = \frac{48}{0,218}$ A.N: $V_3 = 220,18 \text{ V}$

Q.17. Déduction la valeur de la tension composée U₁₃ (en V).

 $U_{13} = \sqrt{3}. V_3$ A.N: $U_{13} = \sqrt{3} \times 220,18 \Rightarrow U_{13} = 381,36 \text{ V}$

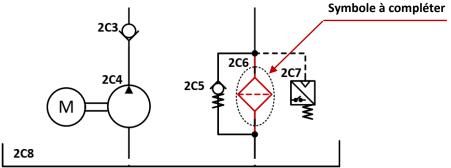
Q.18. Tableau à compléter.

1,25 pts

0,25 pts

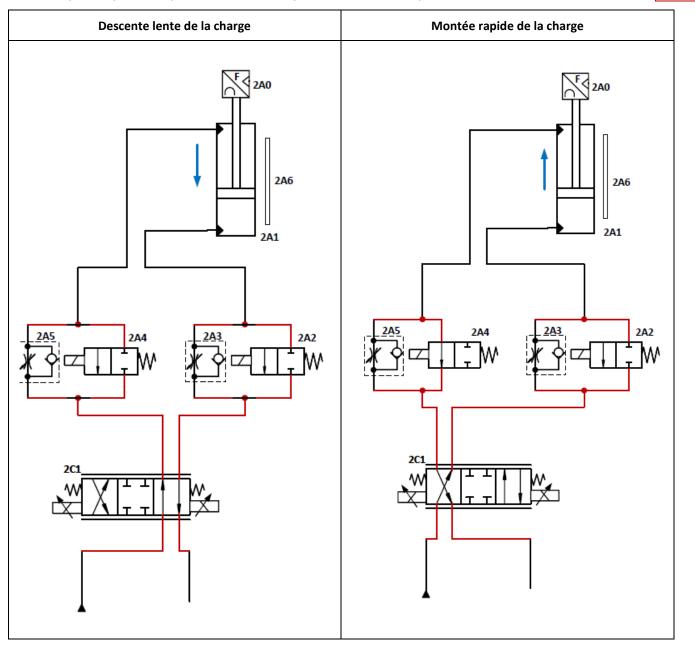
0,25 pts

Repère	Désignation	Fonction	
2C4	Pompe hydraulique	Générer la puissance hydraulique - Transformer l'énergie mécanique en énergie hydraulique.	
2A1	Vérin double effet	Transformer l'énergie hydraulique en énergie mécanique de translation.	
2A5	Limiteur de débit mono/unidirectionnel	Contrôler le débit du fluide dans un seul sens ce qui permet de régler la vitesse du vérin dans un sens.	
2C2	Limiteur de pression	Protéger le circuit des surpressions.	
2C9	Manomètre	Afficher la pression dans le circuit.	
2C3	Clapet de non-retour	Empêcher le passage du flux de fluide dans un sens.	



الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم الرياضية مسلك العلوم الرياضية (ب)

D.Rep **5** /1,25 Pts


Q.19. Symbole du composant repéré 2C6 qui empêche les impuretés de s'infiltrer dans les organes du circuit.

0,25 pts

Q.20. Circuit hydraulique à compléter dans les deux phases de montée rapide et de descente lente.

1,00 pts

_		
	فحة	الص
ì	$\overline{}$	$\overline{}$
I		/
I	8 `	
(

RR 44

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم الرياضية مسلك العلوم الرياضية (ب)

D.Rep 6	/2,75 Pt
----------------	----------

Q.21. Calcul de la pression maximale \mathbf{p}_{max} (en \mathbf{Pa}) que le vérin \mathbf{Vh} doit supporter lorsque l'effort de poussée est maximal.

0,25 pts

$$p_{max} = \frac{F_{vmax}}{S} = \frac{4.F_{vmax}}{\pi.D^2}$$

A.N: $p_{max} = \frac{4 \times 80 \times 10^3}{\pi \times (0,1)^2}$

donc

 $p_{max} = 10185916, 36 Pa$

Q.22. Détermination du diamètre d (en mm).

0,25 pts

Sur l'abaque, on trouve d = 55 mm

Q.23. Le type du vérin adéquat.

0,25 pts

Le type du vérin : V601001500SF

Q.24. Tableau relatif à liaison (4) / (7).

0,75 pts

Liaison	Solution choisie	⊠ Démontable	☐ Par adhérence	
(4) / (7)	Par Goupille élastique	☐ Non démontable	⊠ Par obstacle	
(- / / (- /	rar doupmo olastique			

Q.25. Le nom et la fonction de la pièce (3) :

0,50 pts

Pièce	Nom	Fonction
(3)	Coussinet	Guider en rotation $(4)/(2)$ en réduisant le frottement.

Q.26. Le matériau de la pièce (3):

0,25 pts

Alliage de cuivre (Bronze)

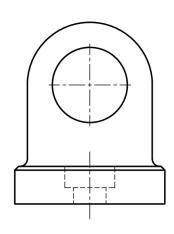
Q.27. Montage de la pièce (3) sur la chape (2) et sur l'axe (4); (Cocher la bonne réponse).

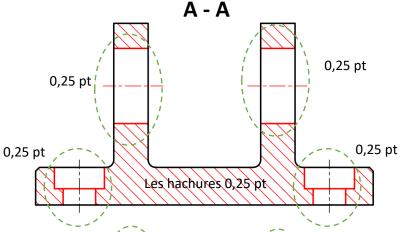
0,50 pts

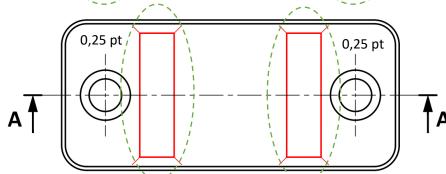
(3) / (2)	(3) / (4)	2 3
⊠ Serrée □ Avec jeu	□ Serrée ☑ Avec jeu	4

RR 44

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - عناصر الإجابة - مادة: علوم المهندس- شعبة العلوم الرياضية مسلك العلوم الرياضية (ب)


D.Rep **7** /3,50 Pts


Q.28. Dessin de la chape de fixation (2) en


Nota : Ne pas représenter les formes cachées.

1,75 pts

- Vue de face coupe A-A
- Vue de dessus

Q.29. La nature de l'information d'entrée et de sortie et la plage de mesure du capteur (IMS)

0,75 pts

Information d'entrée : Grandeur physique (Position de la tige)

Information de sortie : Analogique (Courant 4 – 20 mA)

Plage de mesure : [50 – 2000 mm]

Q.30. L'équation linéaire $y = a \cdot x + b$ qui caractérise ce capteur :

0,25 pts

D'après la Caractéristique entrée/sortie du capteur IMS

$$a = \frac{16}{1950} \implies a = 8, 2 \times 10^{-3} \text{ et } 4 = 8, 2 \times 10^{-3} \times 50 + b \implies b = 3,59$$

$$\text{donc} \quad y = 8, 2 \times 10^{-3}. x + 3, 59$$

Q.31. Le paramètre \boldsymbol{a} représente :

0,25 pts

0,25 pts

Ce paramètre représente la sensibilité du capteur, a est en (mA/mm).

Q.32. La position h (en mm) pour une sortie de 17mA.

Pour I = 17 mA
$$h = \frac{17 - 3.59}{8.2 \times 10^{-3}}$$
 donc: $h = 1635,37$ mm

Q.33. Ce capteur atteint ou affiche cette valeur de courant et justification.

0,25 pts

Ce capteur ne peut pas générer ce courant car h = 1635,37 mm > Cmax = 1500 mm.