

الامتحان الوطني العوحد للبكالوريا الدورة العادية 2025

- الموضوع -

шишишиши NS - 45

4h	مدة الإنجاز	علوم المهندس	المادة
8	المعامل	شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية	الشعبة المسلك

CONSTITUTION DE L'EPREUVE

Volet 1 : Présentation de l'épreuve et grille de notation: Page 1/20
Volet 2 : Présentation du support: Page 2/20

• Volet 3 : Substrat du sujet Pages de 3/20 à 13/20

- Situations d'évaluation: Page 3/20

Documents réponses (DREP) « A rendre par le candidat »: Pages de 4/20 à 13/20

Situation d'évaluation n° 1: Pages de 4/20 à 7/20
Situation d'évaluation n° 2: Pages de 8/20 et 9/20

TOTAL:

• Volet 4 : Documents ressources (**DRES**) Pages de 14/20 à 20/20

VOLET 1: PRESENTATION DE L'EPREUVE

Système à étudier : Système de Propulsion Hybride Rechargeable (SPHR)

• Coefficient: 8

• Moyen de calcul autorisé : Calculatrice non programmable

• Documents autorisés : Aucun

Les candidats rédigeront leurs réponses sur les documents réponses (DREP) prévus à cet effet.

Situation d'évaluation 2

GRILLE DE NOTATION:

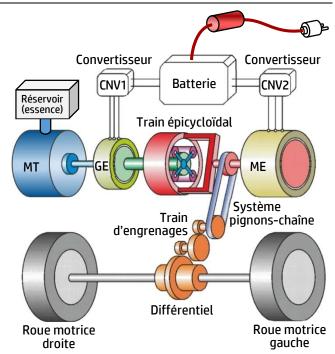
Situation d'évaluation 1					
Tâche	Qu	estion	Note		
		a	2,5 pts		
1.1		b	3 pts		
		C	1,5 pt		
		а	2,75 pts		
1.2	Ь	b1	2 pts		
	U	b2	2 pts		
	а		1,25 pt		
1.3	b		1,5 pt		
1.5		C	1 pt		
	d		1,5 pt		
	To	otal :	19 pts		

Situation a Evaluation 2						
Tâche	Question	Note				
	а	1 pt				
	b	1,5 pt				
2.1	С	1 pt				
	d	2 pts				
	е	2,5 pts				
	а	0,5 pt				
	b	2,5 pts				
2.2	c d	1 pt				
	d	1 pt				
	е	2 pts				
	а	1,5 pt				
	b	1pt				
2.3	С	1,5 pt				
	d	1 pt				
	е	1 pt				
	Total:	21 pts				

Situati	Situation d'évaluation 3						
Tâche	Qu	estion	Note				
		а	1,75 pt				
3.1		b	0,75 pt				
ا . ا		C	3 pts				
		d	4 pts				
	а	a1	1 pt				
	La	a2	4 pts				
		b1	3 pts				
3.2	Ь	b2	1 pt				
	"	b3	2 pts				
		b4	1 pt				
		С	1 pt				
		а	4,5 pts				
3.3		b1	1,5 pt				
ر.د	b	b2	3 pts				
		b3	0,5 pt				
	а		2 pts				
3.4		b	4 pts				
	С		2 pts				
	Total: 40 pts						

/80 POINTS

الصفحة 2 NS - 45


الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية

VOLET 2: PRESENTATION DU SUPPORT

Mise en situation:

Dans le souci d'optimiser la consommation d'essence et de minimiser la diffusion des gaz néfastes pour l'environnement, des voitures de nouvelle génération sont équipées d'un « Système de Propulsion Hybride Rechargeable (SPHR) » (ci-contre) associant un moteur thermique à essence (MT) relié, par le biais d'un train épicycloïdal, à un générateur d'électricité (GE) et à un moteur électrique (ME). L'ensemble est relié aux roues motrices à travers une transmission par un système pignons-chaîne, un train d'engrenages et un différentiel.

Le système de propulsion hybride **permet à la voiture** de se déplacer sur le réseau routier avec une pollution de l'environnement réduite au maximum, il fonctionne selon **quatre modes** principaux :

Mode	Désignation	Fonctionnement
1	Tout électrique	Au démarrage, le moteur électrique (ME) entraîne la voiture en utilisant l'énergie électrique de la batterie. Le moteur thermique (MT) est arrêté.
2	Hybride	En marche normale, le moteur thermique (MT) entraîne la voiture, sa puissance se répartit entre : — celle transmise aux roues motrices ; — celle transmise au générateur d'électricité (GE) qui alimente directement le moteur électrique (ME).
3	Récupération d'énergie	En décélération ou freinage, le moteur électrique réversible (ME), entraîné par la voiture, joue le rôle d'un générateur d'électricité : il récupère une partie de l'énergie cinétique et la convertit en énergie électrique qui recharge la batterie.
4	Mixte	Lors de fortes accélérations, le moteur électrique (ME) et le moteur thermique (MT) entraînent la voiture ensemble. La batterie est rechargée par le générateur d'électricité, et le moteur électrique (ME) est alimenté non seulement par l'énergie délivrée par le générateur d'électricité (GE) mais aussi par la batterie.

La batterie peut être rechargée à partir du réseau électrique via un chargeur adéquat. La gestion des modes de fonctionnement du **système de propulsion hybride rechargeable** repose sur un **circuit de commande** associé à un asservissement qui synchronise les vitesses des moteurs à des valeurs optimales.

Problématique et objectifs de l'étude : Le bureau d'études d'une entreprise est chargé de vérifier et s'assurer des performances d'une voiture équipée du **système de propulsion hybride rechargeable** afin de décider d'accepter ou de refuser d'en acquérir d'autres. Pour cela, il serait impératif de :

- Appréhender et analyser le fonctionnement du système de propulsion hybride rechargeable;
- Valider et analyser le **comportement** de quelques éléments du système ;
- Etudier partiellement la production et les modalités de contrôle d'un élément du système.

الصفحة 3 NS - 45

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية

VOLET 3: SUBSTRAT DU SUJET

SITUATION D'EVALUATION 1:

Pour examiner le système de propulsion hybride rechargeable, il serait pertinent de saisir son fonctionnement, réaliser une analyse fonctionnelle et technique de certains composants mécaniques, ainsi que de concevoir des solutions constructives. Se référer à la présentation du support page (2/20), au dessin d'ensemble et sa nomenclature DRES pages (14/20 et 15/20) et traiter les tâches suivantes :

Tâche 1.1 : Dans cette tâche, on cherche à comprendre le fonctionnement du système de propulsion hybride rechargeable. Pour cela, répondre aux questions des **DREP** pages (4/20 et 5/20).

Tâche 1.2: L'analyse morphologique et l'appréhension des solutions constructives retenues est essentielle. A cette fin, répondre aux questions du **DREP** page (6/20).

Tâche 1.3: Pour gérer l'énergie électrique selon les modes de fonctionnement, il est primordial d'établir le circuit de commande l'assurant de manière optimale. C'est pourquoi, vous êtes amenés à répondre aux questions du **DREP** page (7/20) en se référant au **DRES** page (16/20).

SITUATION D'EVALUATION 2:

Pour s'assurer du fonctionnement de la voiture selon les modes imposés par le système de gestion, il est primordial de vérifier ses conditions de déplacement, d'étudier la répartition de la puissance mécanique et d'optimiser le choix de la forme d'une poutre sollicitée à la contrainte de torsion simple. Pour cela, on vous demande d'effectuer les tâches suivantes :

Tâche 2.1 : L'objectif de la tâche est de vérifier si les conditions de roulage de la voiture, en mode **tout électrique,** respectent les paramètres imposés par le système de gestion. Se référer au **DRES** pages (16/20 et 17/20) et répondre aux questions du **DREP** page (8/20).

Tâche 2.2 : Cette tâche consiste à déterminer quelques grandeurs physiques de sortie en mode mixte, notamment, la puissance mécanique réparti vers le générateur d'électricité **GE**, le couple de traction généré au niveau de chaque roue motrice et la vitesse de déplacement de la voiture. En tenant compte des données du **DRES** pages (14/20 à 18/20), répondre aux guestions des **DREP** pages (8/20 et 9/20).

Tâche 2.3 : L'arbre de transmission gauche doit assurer la communication à la roue motrice gauche d'un moment de torsion maximal $C_{\mathbf{r}} = M_{\mathbf{t}} = 270 \ N \cdot m$. On envisage de comparer l'utilisation d'une poutre cylindrique pleine et d'une autre creuse. A cette fin et en utilisant les données du **DRES** page (18/20), répondre aux questions du **DREP** page (9/20).

SITUATION D'EVALUATION 3:

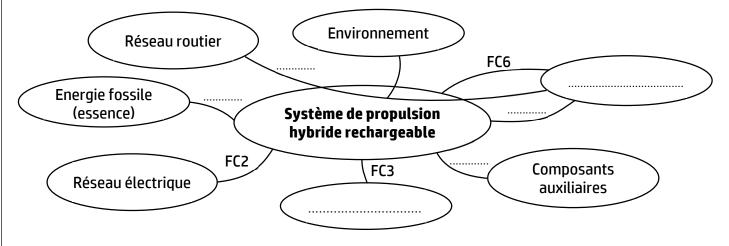
Lors de son fonctionnement, le **planétaire** (44) en **G 25 Cr Mo 4** est sollicité à la torsion, on lui-applique une trempe (TRC) pour atteindre la valeur requise de (30 < HRc < 40). La fabrication de cette pièce en série réclame l'analyse de sa cotation et l'établissement partielle de son dossier de fabrication.

Tâche 3.1 : L'étude de la production du planétaire (44) DRES pages (18/20 et 19/20) doit débuter par une analyse de son dessin de définition et une détermination de la forme du brut capable. Pour ce faire, répondre aux guestions du DREP page (10/20).

Tâche 3.2 : l'étude de la géométrie de l'outil et sa disponibilité font parties du dossier de fabrication. Pour cela, utiliser le **DRES** pages (18/20 et 19/20) et répondre aux questions du **DREP** page (11/20).

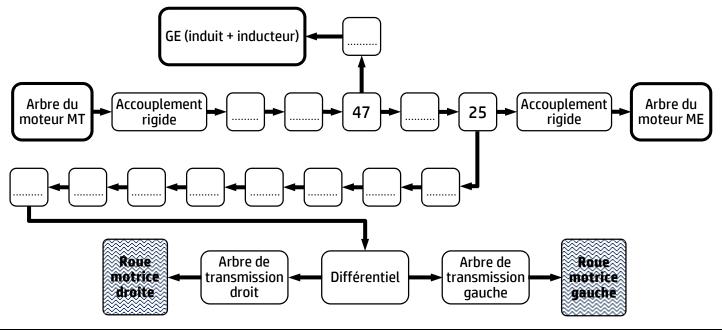
Tâche 3.3: Les modalités de la production du planétaire (44) réclament la mise en application des processus de conversion des formes géométriques et des caractéristiques mécaniques. En exploitant les données des **DRES** pages (18/20 à 20/20), répondre aux questions du **DREP** page (12/20).

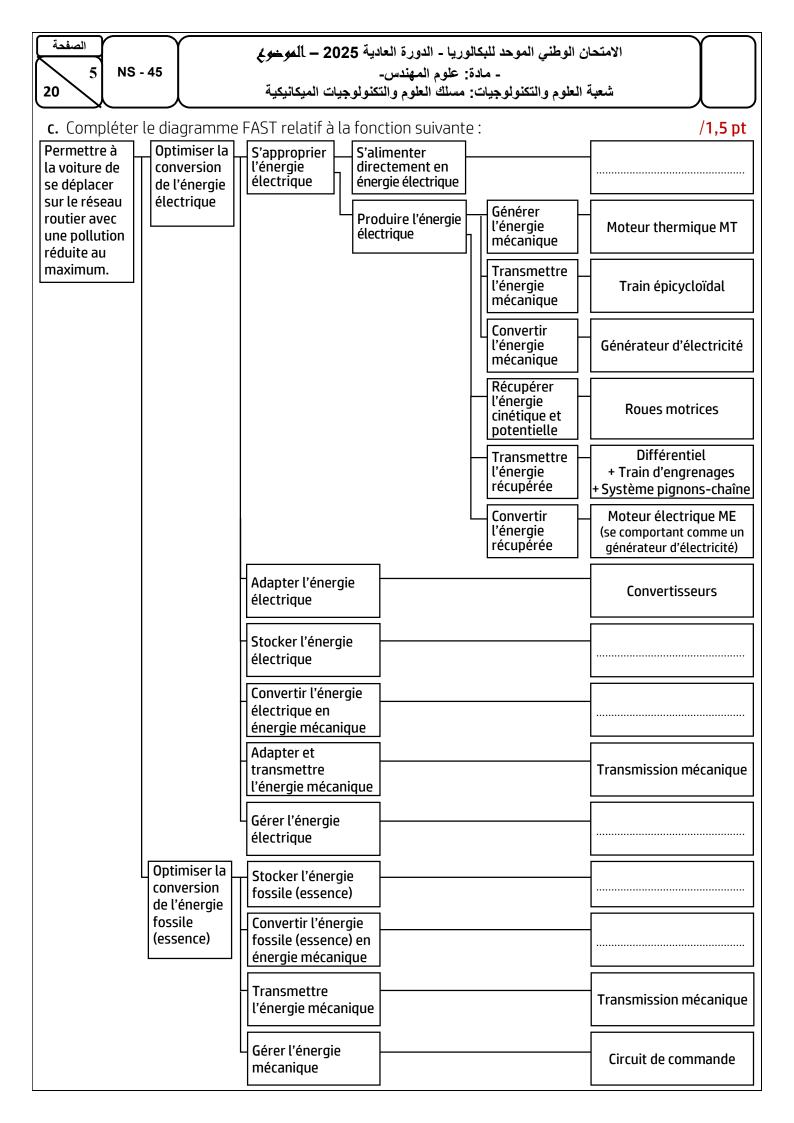
Tâche 3.4 : Le contrôle statistique adopté pour examiner la cote Ø62 H7 permet d'établir des cartes de contrôle pour s'assurer de l'aptitude du procédé de production. Pour cela, répondre aux questions du **DREP** page (13/20) en s'inspirant des exemples d'analyse des courbes du **DRES** page (19/20).


DOCUMENTS REPONSES (DREP)

SITUATION D'EVALUATION 1

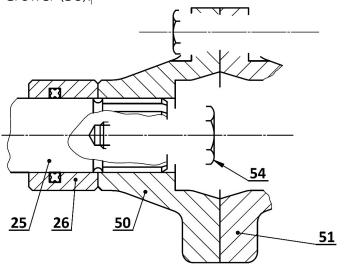
Tâche 1.1: Analyse fonctionnelle et technique (Voir Présentation du support, page 2/20)

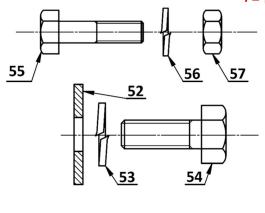

a. Compléter le diagramme (pieuvre) et le tableau des fonctions de service suivants :


/2,5 pts

	Fonctions de service							
FP1								
FC1	Consommer l'énergie fossile (essence) disponible.							
FC2								
FC3	Etre commandé par le conducteur.							
FC4	Alimenter en énergie les composants auxiliaires.							
FC5	S'adapter à la vitesse de la voiture.							
FC6	Récupérer l'énergie cinétique de la voiture en freinage.							

b. Compléter, selon le mode 2 (hybride) et en se référant au schéma cinématique du « SPHR » DRES page (16/20), le synoptique suivant par les repères des éléments convenables : /3 pts

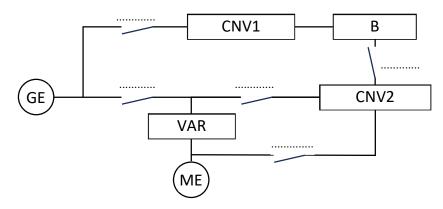

Tâche 1.2: Morphologie des formes technologiques et représentation graphique, se référer au dessin d'ensemble DRES page (14/20)


a. Compléter le tableau suivant relatif aux formes géométriques réalisées sur les pièces 25, 31 et 45 en indiquant, pour chaque forme, son repère ou sa désignation ainsi que son rôle : /2,75 pts

Formes repérées sur les pièces	Repère	Désignation	Rôle ou fonction
A-A	G		Assurer l'arrêt en translation de l'élément monté sur l'arbre
B C		Nervure	Augmenter la rigidité de la pièce
	I		Limiter des formes différentes sur la même pièce
D 31		Dégagement	Assurer le contact de l'élément monté sur l'alésage avec la surface plane
<u>е 45 ғ</u>	J	Cannelure	
		Méplat	Empêche la rotation de 45 par rapport à 42
	Н	Rainure de clavette	
G H 25 I J		Congé	Facilite la répartition de la matière pendant le moulage
	F		Supprimer l'arrête vive au bout du cylindre

- **b.** Compléter, en respectant les dimensions des éléments donnés ainsi que les règles de montage, la vue en coupe du dessin de l'accouplement rigide ci-dessous par :
- **b1.** La liaison complète entre l'arbre **25** et le plateau (**50**) réalisée par une vis H (**54**), une rondelle plate (**52**) et une rondelle Grower (**53**);

b2. La liaison complète entre les deux plateaux (**50**) et (**51**) par des boulons (**55+57**) et des rondelles Grower (**56**).

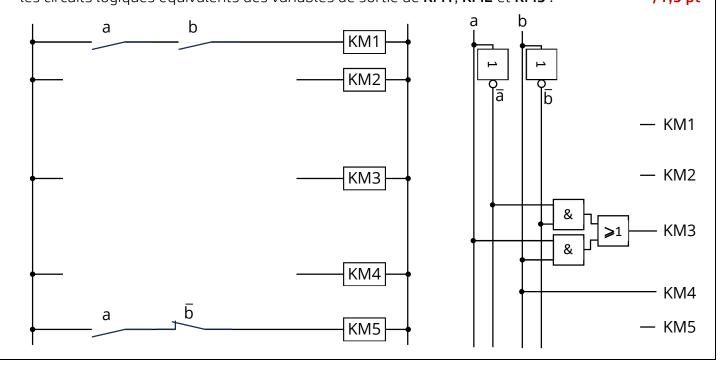


Tâche 1.3: Etude de la commande du moteur électrique (ME) selon les modes de fonctionnement :

a. Compléter la configuration électrique suivante du véhicule hybride par les noms des contacts électriques (de KM1 à KM5) selon les 4 modes de fonctionnement DRES page (16/20): /1,25 pt

b. Compléter la table de vérité des variables de sorties KM1 à KM5 en fonction des variables d'entrée a et b pour les modes 1, 2 et 4 : /1,5 pt

Mode	Variables	d'entrée		Vari	ables de so	ortie		
	a	b	KM1	KM1 KM2 KM3 KM4 KM5				
1	0	0						
2	0	1						
3	1	0	0	1	0	0	1	
4	1	1						


c.	Donner	les	équations	logiques	simplifiées	des	contacts	KM1	à KM	15
٠.	Domici	ıcs	cquations	iogiques	Jiiiipiiiicca	ucs	Contacts		u IXI	

/1 pt

$$\mathsf{KM1} = \dots \qquad \mathsf{KM2} = a + \overline{b}$$

KM3 =

d. Compléter les circuits électriques de commande des contacts électriques KM2, KM3 et KM4 et tracer les circuits logiques équivalents des variables de sortie de KM1, KM2 et KM5 : /1,5 pt

الصفحة	
8	NS - 45

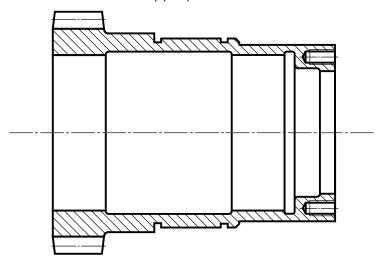
SITUATION D'EVALUATION 2

Tâche 2.1 : Etude dynamique et énergétique en mode 1 (tout électrique), voir DF	ES page	· (17/20)
---	---------	-----------

a.	Ecrire, selon la modélisation des actions mécaniques, l'équation vectorielle de l'équilibre dynamique appliqué à la voiture de masse M pendant son mouvement : /1 pt
b.	Projeter l'équation de l'équilibre dynamique sur l'axe \vec{x} et calculer l'effort de traction F_T (en N) :/1,5 pt
c.	Déterminer, en prenant $F_T=~1350~N$, la puissance utile Pu (en W) capable de déplacer la voiture à la vitesse de $V=50~km/h=13,89~m/s$ suivant la direction de l'axe \vec{x} : /1 pt
d.	Calculer la vitesse de rotation ω_{roue} (en rad/s) d'une roue motrice de la voiture, et en déduire sa fréquence de rotation N_{roue} (en tr/min) : /2 pts
e.	Calculer la puissance mécanique P_m (en kW) du moteur électrique (ME), sa fréquence de rotation N_{25} (en tr/min) et conclure sur sa validité : /2,5 pts
DF	che 2.2 : Etude de la répartition de la puissance mécanique en mode 4 (mixte), se référer aux RES pages (14/20 à 18/20)
	Calculer le couple C_{44} (en N·m) réparti vers le générateur d'électricité (GE): /0,5 pt Calculer la fréquence de rotation N_{44} (en tr/min) du planétaire 44 et en déduire la puissance mécanique \mathcal{P}_{GE} (en kW) réparti vers le générateur d'électricité (GE): /2,5 pts
C.	Vérifier que le rapport de transmission $k=\frac{N_{roue}}{N_{25}}=0,24$: /1 pt

الصفحة	
7 9	NS - 45
20	

d.	En déduire la fréquence de rotation N_{roue} (en tr/min) d'une roue motrice : /1 pt
e.	Calculer la vitesse de déplacement de la voiture $m{V_v}$ (en km/h), la comparer avec $m{V_{op}}$ et conclure sur la capabilité des moteurs : /2 pts
	che 2.3 : Etude comparative d'un arbre sollicité à la torsion, se référer au DRES page (18/20) Calculer la contrainte maximale $ au_{c_{max}}$ en (N/mm²) dans une section droite de l'arbre supposé de
	section creuse : /1,5 pt
b.	Déterminer l'angle unitaire de torsion $ heta_c$ (en rad/mm) dans l'arbre creux : /1 pt
c.	En déduire la déformation angulaire $lpha_c$ (en degrés) dans l'arbre creux entre deux sections droites distantes de $f L$:
d.	Montrer que le rapport du gain en matière $\lambda = \frac{M_C}{M_P} = \frac{(\mathbf{d}_e^2 - \mathbf{d}_i^2)}{d^2}$ et calculer sa valeur numérique : /1 pt
e.	Comparer les masses et les déformations angulaires des deux arbres de transmission (plein et creux) et conclure à propos du choix adéquat : /1 pt


الصفحة	
10	NS - 45
20	

SITUATION D'EVALUATION 3

Tâche 3.1 : Analyse du dessin de définition et du mode d'obtention du brut, DRES pages (18/20 et 19/20)
--

	Cocher les cases correct			lu matóriau G 25 Cr Mo /		
a.						
		aiblement allié(e)		mite apparente d'élas		мча
		nalléable		pourcentage de carbo		25.40
	☐ Fonte ☐ r	on allié(e)	□ sa r	ésistance maximale à		
	□ 0,4%	☐ de carbone		□ 0,04%	☐ de molybo	lène
	contenant 🛮 1%	☐ de chrome	et	□ 0,1%	□ de manga	nèse
	□ 4%	☐ de cobalt		☐ quelques traces	□ de magné:	sium
ο.	Préciser le procédé d'o	obtention du brut d	du planét	aire (44) et justifier vot	re réponse :	/0,75 pt
	Procédé			Justification		
			•••••			
ς.	Expliciter la spécificati	on géométrique si	uivante [06 <equation-block> 0,01 :</equation-block>		/3 pts
	Nom de la tolérance :					
	Cocher le type de la t		lde form	e □d'orientation	☐de position	
	Interprétatio	n de la spécificatio	on	Schéma	démonstratif	
				Surface tolérar	ıcée	

- Ajoutant les surépaisseurs d'usinage ;
- Indiquant le plan de joint et les dépouilles ;
- Dessinant les arrondis aux endroits appropriés.

الصفحة	
11	NS - 45

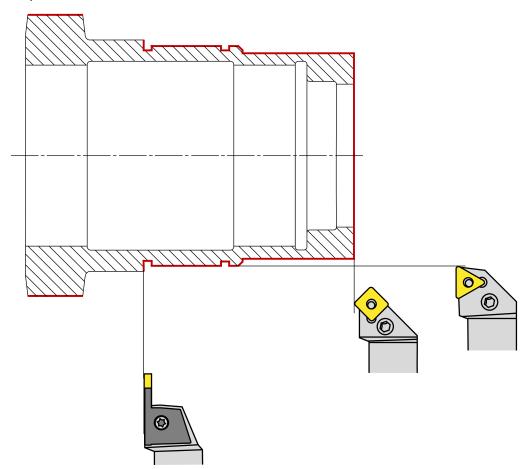
Tâche 3.2 : Validation de l'outillage. Se référer au DRES pages (18/20 et 19/20)

a. L'outil choisi (à pastille carbure **SEKW**) pour réaliser la surface **D3** est représenté ci-dessous :

a1. Donner le nom de l'outil et son orientation (à gauche ou à droite) : /1 pt

 b. Calcul du nombre de pieces fabriquees par une plaquette pour l'ébauche de D3 : b1. Calculer la fréquence de rotation N (en tr/min) et en déduire la vitesse d'avance Vf (en tr/min) et en de la vites et la vit	
b2. Calculer le temps de coupe tc (en min) sachant que la longueur de coupe lc = 4 3	2 mm : /1 pt
b3. Calculer la durée de vie de l'outil T (en min) :	/2 pts
 b4. Déduire le nombre de pièces N_{p1} à usiner par une seule arête tranchante, puis le N_{p4} à usiner par une plaquette sachant qu'elle possède 4 arêtes tranchantes : 	nombre de pièces /1 pt
c. En général, quel est le plus avantageux, utiliser un outil en acier rapide ou en carbur	re?justifier: /1 pt

الصفحة 12 NS - 45


الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية

Tâche 3.3 : Conversion de la matière d'œuvre (formes et caractéristiques)

a. Placer sur le croquis de la phase **20** ci-dessous :

/4,5 pts

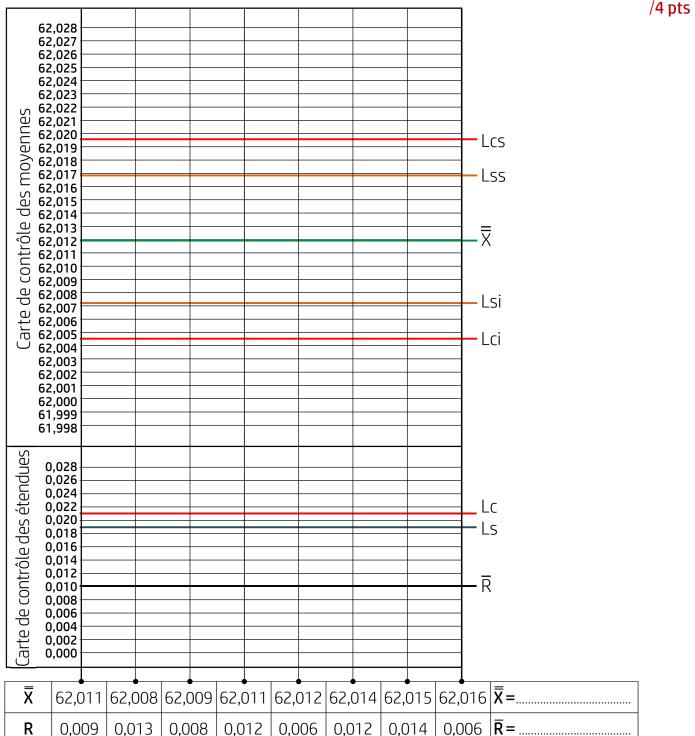
- les éléments de mise et de maintien en position (symboles technologiques de la 2^{ème} norme);
- les cotes fabriquées non chiffrées.

- b. En se référant au diagramme TRC du 25 Cr Mo 4 DRES page (20/20) :
- **b1.** Compléter le tableau suivant par les éléments convenables :

/1,5 pt

Symbole	Nom de l'essai	Forme du pénétrateur	Matière du pénétrateur
HRc			
HV			

b2. Compléter, le tableau suivant par les résultats obtenus à la fin du traitement thermique : /3 pts

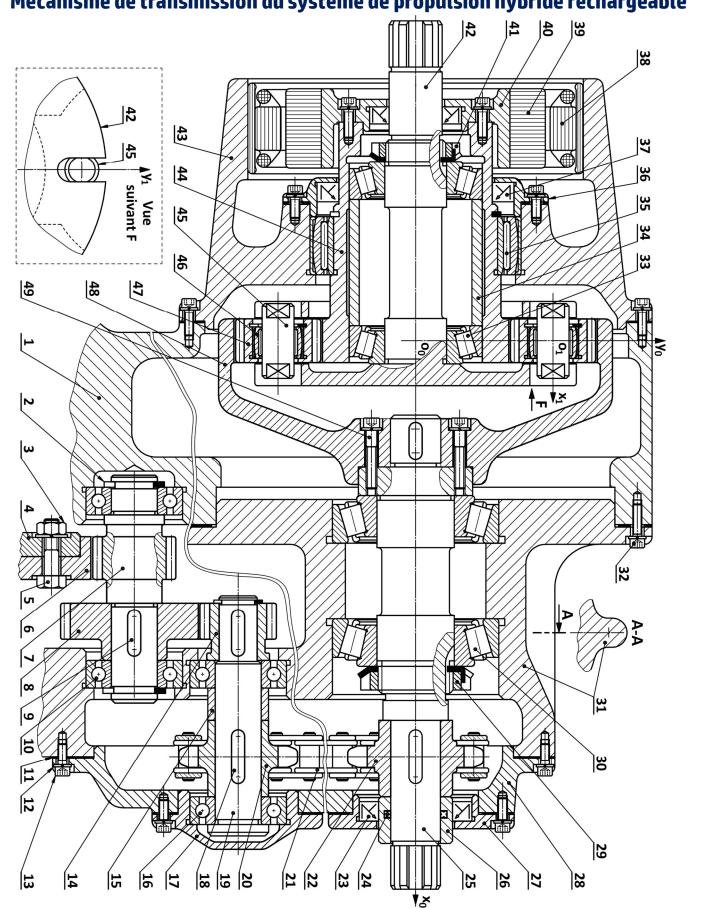

Courbe de refroidissement	Temps de refroidissement	Constituants micrographiques	Dureté
C 1	50 s		
C2	4 min		
C3	20 min		
C4	2 h		

b3. En déduire la courbe de refroidissement permettant d'obtenir les caractéristiques mécaniques exigées (30 < HRc < 40): /0,5 pt

الصفحة	$ \uparrow $
20 13	NS - 45

Tâche 34 : Maîtrise statistique des procédés – cartes de contrôle.

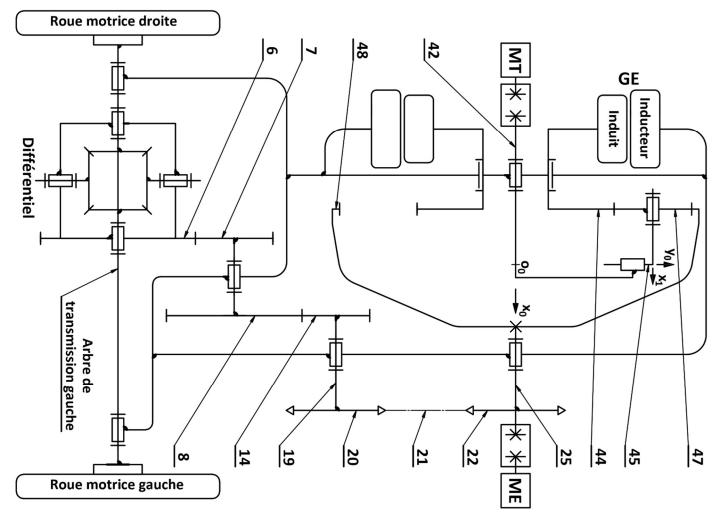
- **a.** Calculer, selon les données du tableau ci-dessous, la moyenne des moyennes \overline{X} (en mm), la moyenne des étendues \overline{R} (en mm) : /2 pts
- **b.** Tracer sur les cartes de contrôle suivantes les courbes d'évolution de la moyenne et de l'étendue :


c. Se référer aux exemples d'analyse des cartes de contrôle du DRES page (19/20) et conclure en cochant les 5 cases adéquates :

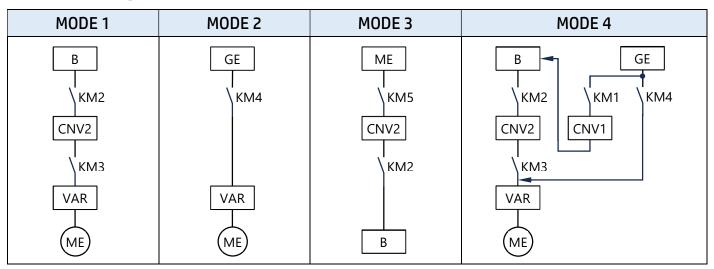
Deux	x observati	ons (2)	Deux	Interpréta	tions (2)	Une m	esure à pre	endre (1)
□ 01	□ 02	□ 03	□ I1	□ 12	□ I3	□ M1	□ M2	□ M3
□ 04	□ 05		□ 14	□ I5		□ M4	□ M5	

VOLET 4: DOCUMENTS RESSOURCES (DRES)

Mécanisme de transmission du système de propulsion hybride rechargeable


• Nomenclature:

10			25.6.14.4	+
49	4	Vis à tête cylindrique à six pans creux	25 Cr Mo 4	Traité
48	1	Planétaire couronne		Z48 = 78 dents
47	4	Satellite		Z47 = 24 dents
46	4	Roulement à aiguilles		
45	4	Axe porte satellite		
44	1	Planétaire	35 Cr Mo 4	Z44 = 30 dents
43	1	Corps support de gauche		
42	1	Porte-satellite		Arbre primaire
41	1	Ecrou à encoches type KM		
40	1	Support de l'induit		
39	1	Induit		Rotor
38	1	Inducteur		Stator
37	1	Joint à lèvres, type AS		
36	1	Couvercle	EN-GJL-150	
35	1	Roulement à aiguille		
34	1	Entretoise		
33	2	Roulement à rouleaux coniques		
32	9	Vis à tête cylindrique à six pans creux	25 Cr Mo 4	Traité
31	1	Corps support de droite		
30	2	Roulement à rouleaux coniques		
29	1	Ecrou à encoches type KM		
28	1	Support latéral	EN-GJL-150	
27	1	Couvercle	EN-GJL-150	
26	2	Entretoise		
25	1	Arbre secondaire		
24	1	Joint quadrilobe		
23	1	Joint à lèvres, type AS		
22	1	Pignon pour chaîne supérieur		Z22 = 24 dents
21	1	Chaîne		
20	1	Pignon pour chaîne inférieur		Z20 = 25 dents
19	2	Arbre intermédiaire		
18	2	Clavette parallèle forme A	C 35	NF E 22-177
17	1	Couvercle	EN-GJL-150	
16	2	Roulement à une rangée de billes à contact radial	E 295	
15	1	Entretoise		
14	4	Pignon		Z14 = 18 dents
13	8	Vis à tête cylindrique à six pans creux	25 Cr Mo 4	Traité
12	8	Rondelle Grower		
11	1	Joint plat		
10	2	Roulement à une rangée de billes à contact radial	E 295	
9	1	Clavette parallèle forme A	C 35	NF E 22-177
8	1	Roue dentée	233	Z8 = 36 dents
7	1	Pignon arbré		Z7 = 22 dents
6	1	Roue dentée (couronne)		Z6 = 44 dents (trempée)
5	16	Vis à tête hexagonal ISO 4014 - M10 - 08		NF EN ISO-4014
4	1	Coquille de différentiel		IN LINIOU TOIT
3	16	Ecrou hexagonal ISO 4032 - M10 - 08	C 35	NF EN ISO-4032
2	1	Anneau élastique pour arbre		NF E 25-515
1	1	Bâti	EN-GJL-150	INI L LJ JIJ
Rep	Nb	Désignation	Matière	Observation
iveh	טויו	Designation	ויומנוכו כ	ODSEL VALIUII


الصفحة 16 NS - 45

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية

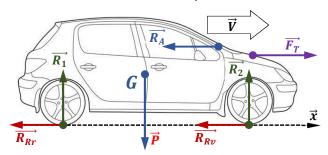
• Chaîne cinématique du SHPR :

· Schémas équivalents des différents modes de fonctionnement :

Légende:

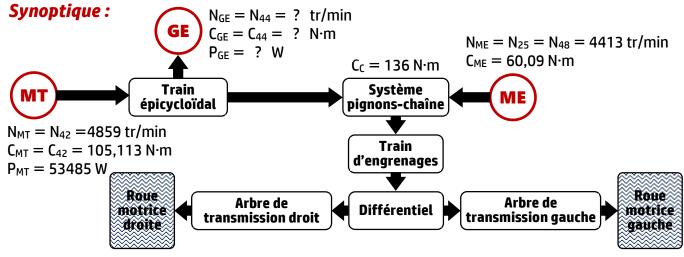
GE : Générateur d'électricité **ME** : Moteur électrique réversible

B : Batterie **VAR** : Variateur de vitesse


KM1, KM2, KM3, KM4 et KM5 : Contacts électriques (KMi = 1 : fermé ; KMi= 0 : ouvert)

الصفحة 17 NS - 45

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية


· Conditions de roulage en mode 1 (Tout électrique) :

La voiture roule sur une route horizontale à une vitesse ne dépassant pas V = 50 km/h = 13,89 m/s. Le système de gestion limite la puissance mécanique développée par le moteur électrique à $P_{\text{MEmax}} = 20 \text{ kW}$ et sa fréquence de rotation $N_{\text{MEmax}} = 1800 \text{ tr/min}$.

- $-\overrightarrow{R_1}$ et $\overrightarrow{R_2}$: composantes normales de la réaction du sol sur les roues de la voiture ;
- $-\vec{P}$: poids de la voiture en pleine charge;
- $-\vec{V}$: vitesse de déplacement de la voiture ;
- -M=1300~kg: masse de la voiture en pleine charge;
- $-\|\overrightarrow{R_A}\| = 52 N$: résistance aérodynamique ;
- $\|\overrightarrow{R_{Rv}}\| = \|\overrightarrow{R_{Rr}}\| = 64 N$: composantes tangentielles de la résistance au roulement appliqué par le sol sur les roues ;
- $a = 0.9 \text{ m/s}^2$: accélération de la voiture;
- $-d_{roue}=0.62~m$: diamètre de chaque roue de la voiture ;
- $-k=\frac{N_{roue}}{N_{25}}=0.24$: rapport de transmission entre l'arbre 25 et les roues motrices ;
- $-\eta_r = 0.95$: rendement de la chaîne de transmission de puissance mécanique entre l'arbre 25 et les roues motrices de la voiture.

Conditions de la répartition de la puissance mécanique en mode 4 (Mixte) :

Analyse du train épicycloïdal (éléments 42 + 44 + 47 + 48) :

- Couple réparti vers le générateur d'électricité (**GE**) : $m{C_{44}} = m{0}$, $m{2777} \cdot m{C_{42}}$
- Couple réparti vers le moteur électrique (ME) : $C_{25} = C_{48} = 0,7222 \cdot C_{42}$
- Relation entre les fréquences de rotation : 3, $6 \cdot N_{42} = 2$, $6 \cdot N_{48} + N_{44}$

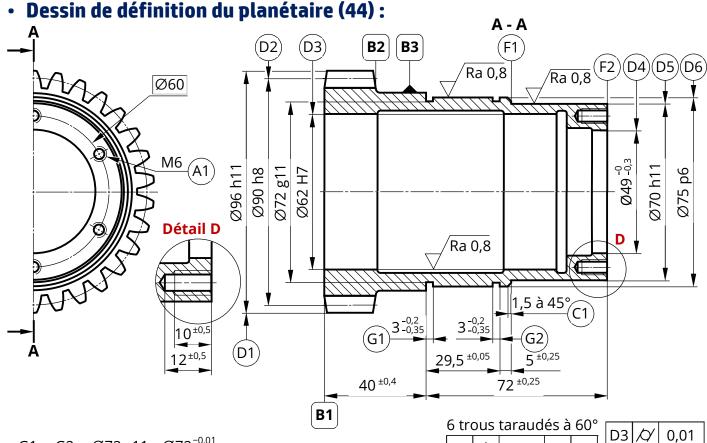
Autres données :

- Condition de roulement de la voiture en pleine charge exigent, au niveau du système pignons-chaîne, un couple combiné $C_C=C_{48}+C_{MT}-C_{44}=136~N\cdot m$
- Vitesse optimale de déplacement de la voiture : $oldsymbol{V_{op}}=$ 120 $oldsymbol{km/h}$

- Nombres de dents des roues dentées : voir nomenclature DRES page (15/20)
- Rapport de transmission du différentiel est : $k_d = \frac{N_{roue}}{N_6} = 1$
- Rendement global de la chaîne de transmission de puissance entre l'arbre 25 et les roues motrices est $\eta_a = 0,95$
- Diamètre de chaque roue de la voiture : $oldsymbol{d_{roue}} = oldsymbol{0}$, 62 $oldsymbol{m}$

Hypothèses et données relatives à la sollicitation de la torsion :

Communes aux deux arbres (creux et plein):


- Moment de torsion maximal $oldsymbol{\mathcal{C}}_{\mathbf{r}} = oldsymbol{M}_{\mathbf{t}} = oldsymbol{270~N} \cdot oldsymbol{m}$
- Module de coulomb $G = 8.10^4 N/mm^2$
- Masse volumique $\rho = 7800 \, Kg/m^3$
- Coefficient concentration de contrainte $k_t = 1,86$
- Longueur L = 400 mm

Arbre creux:

- Diamètre extérieur $d_e = 38 mm$
- Diamètre intérieur $d_i = 24 mm$

Arbre plein:

- Diamètre d = 35 mm
- Contrainte maximale $au_{p_{max}}=59,65~N/mm^2$ dans une section droite
- Déformation angulaire $lpha_p=0$, 52° entre deux sections droites distantes de L

 $G1 = G2 = \emptyset 72 g11 = \emptyset 72^{-0.01}_{-0.2}$

 $D1 = \emptyset 96 h11 = \emptyset 96^{-0.21}$

 $D3 = \emptyset 62 H7 = \emptyset 62^{+0,03}_{+0}$

 $D5 = \emptyset 70 h11 = \emptyset 70^{-0.19}$

 $D6 = \emptyset 75 p6 = \emptyset 75^{+0,051}_{+0,032}$

Echelle 2:3

Ra 3,2 sauf indication

Matière: G25 Cr Mo 4

Ø0.4 F2 D4

0,01

D3 Ø0,5 В3 D2 | 🔘 | Ø0,01 | D3

F2 0,04 D3

D6 0 00,02 D3

D6 \ \(\frac{1}{2} \right)

• Avant-projet d'étude de fabrication :

Phase	Désignation	Surfaces usinées	Mise en position isostatique	Machine-outil
00	Contrôle de brut	Moulage en sable		
10	Alésage	D3, D4	4N/ B3 ; 1N/B2	Aléseuse horizontale
20	Tournage	F2, D1, F1, D6, D5, G1, G2, C1	4N/D3;1N/B1	Tour parallèle
30	Taillage d'engrenage	D2 (Z=30 dents ; m=3)	4N/D3;1N/B1	Tailleuse d'engrenage
40	Perçage taraudage	A1×6 à 60°	3N/F2;2N/D4;1N/D6	Perceuse taraudeuse
50	Contrôle final			Poste de métrologie

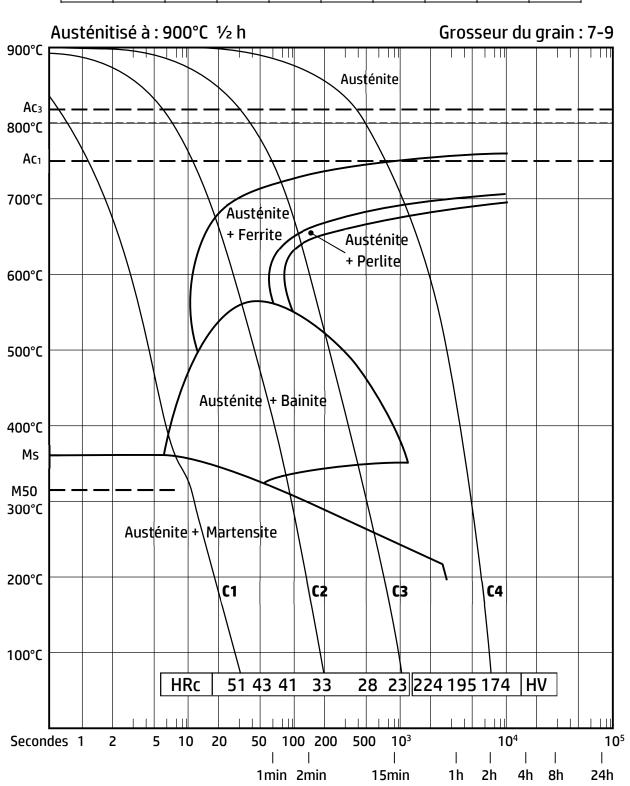
• Données relatives à la fabrication :

Vitesse de	Avance	Profondeur de	Diamètre brut	Longueur de	Paramètre de la loi de Taylor		
coupe Vc	par tour f	passe a	de D3	coupe <i>lc</i>	Cv	n	
100 m/min	0,2 mm/tr	2 mm	58 mm	42 mm	74,19×10 ⁵	-2,85	

• Exemples d'analyse des courbes des moyennes et des étendues :

Exemples de variation des moyennes

Résultat du contrôle	Observations			Interprétations		Mesures à prendre		
Zone de surveillance supérieure Zone de surveillance inférieure	01	Pas de grande variation de la moyenne	11	Le processus est bien réglé	M1	Pas de corrections à envisager		
Zone de surveillance supérieure Zone de surveillance inférieure	02	Une série de points consécutifs en augmentation	12	Risque de production mauvaise	M2	Rechercher la cause (sans doute spéciale) Régler le processus		
Zone de surveillance sup. Zone de surveillance inférieure	03	La dernière moyenne sort de la limite d'acceptation	13	Le processus dérive	МЗ	3. Voir le journal de bord pour trouver la cause commune afin de la corriger durablement 4. Régler le processus		


Exemples de variation des étendues

Résultat du contrôle		Observations		nterprétations		Mesures à prendre	
Zone de surveillance	04	Pas de grande variation de l'étendue	14	Processus stable	M4	Pas de corrections à envisager	
Zone de surveillance	05	L'étendue d'un échantillon sort de la limite d'acceptation	15	Le processus n'est pas capable (il produit des pièces mauvaises)	M5	5. Arrêt immédiat du processus 6. Consulter journal de bord et rechercher la cause	

• Diagramme TRC 25 Cr Mo 4

C %	Mn%	Si%	S%	Р%	Ni%	Cr%	Mo%	Cu%	V%

