الصفحة 1 9 4***

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2025

المملكة المغربية وزارة المغربية وزارة المرية المغربية المغربية المغربية المغربية المغربية المعالمة المدرسية المركز الوطني للامتحانات المدرسية وتقييم التعلمات

عناصر الإجابة

RR - 45

مدة الإنجاز 4h

علوم المهندس

المادة

المعامل 8

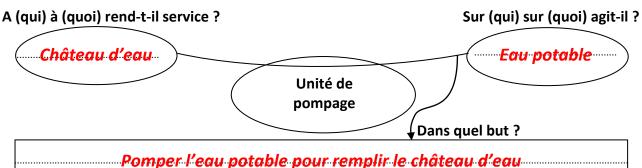
شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية

الشعبة أو المسلك

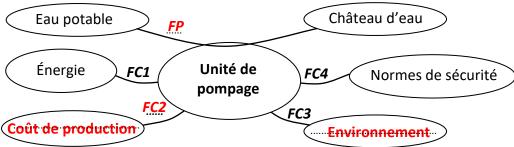
ELEMENTS DE REPONSE

GRILLE DE NOTATION

SITUATION D'ÉVALUATION 01		SITUATION D'ÉVALUATION 02		SITUATION D'ÉVALUATION 03		
TACHE 1.1		TACHĘ 2.1		TACHE 3.1		
а	0,75pt		а	2pts	a	2pts
b	1pt		b	1pt	b	0,5pt
С	0,5pt		С	1pt	С	3pts
TA	CHE 1.2		TAC	HE 2.2	TACHE 3.2	
a	2pts		а	2pts	a	2,5pts
b	1,5pt		b	4pts	b	3pts
С	0,75pt		С	2pts	С	2pts
d	4pts		d	2pts	d	2pts
TA	CHE 1.3	TACHE 2.3		е	2,75pts	
а	2pts		а	2pts	f	2pts
b	1,5pt		b	2pts	g	2pts
С	2pts		С	2pts	h	2pts
d	2pts		d1	1pt	i	2pts
		d	d2	1pt	j	2pts
					TACHE	3.3
				а	2pts	
				b	1pt	
/				С	1pt	
				d	1pt	
				е	6,25pts	
					f	1pt
Total SEV01	18 pts	Total	SEV02	22 pts	Total SEV03	40 pts
TOTAL : /80 Points						


Documents réponses : (DREP)

SITUATION D'EVALUATION 01:


<u>Tâche 1.1 : Analyse fonctionnelle :</u>

a- Compléter le diagramme « bête à cornes » ci-dessous :

/0,75pt

b- Compléter le diagramme des interactions, à partir du tableau des expressions des fonctions de service de la question "c":
 /1pt

c- Compléter le tableau des expressions des fonctions de service à partir du diagramme des interactions de la question "b": /0,5pt

FP	Pomper l'eau potable pour remplir le château d'eau
FC1	Être alimentée en énergie
FC2	Réduire le coût de production au maximum
FC3	Respecter l'environnement (être silencieuse)
FC4	Respecter les normes de sécurité en vigueur

Tâche 1.2 : Analyse technique et représentation graphique :

a- Compléter, par le nom et la fonction des pièces choisies, le tableau suivant : /2pts

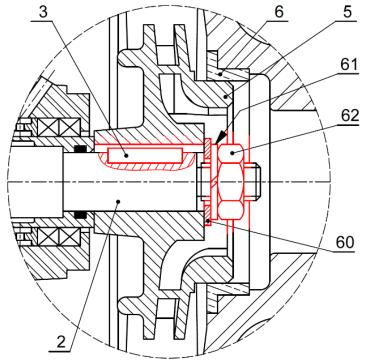
Repère des pièces	Nom	Fonction
6	Coussinet	Assurer le guidage en rotation de 5/1 en réduisant le frottement
44	Joint à deux lèvres	Assurer l'étanchéité dynamique
45	Écrou à encoches	Arrêt en translation des bagues intérieures de 52/2
54	Bouchon	Fermer le trou de vidange

b- Compléter, par le nom de la liaison et le nombre de degrés de liberté, le tableau suivant : /1,5pt

La liaison	Nom de la liaison	Nombre de degrés de liberté
5/2	Fixe (Encastrement)	0
5/1	Pivot glissant	2
2/56	Pivot	1

c- Donner le type de l'accouplement liant le moteur et la pompe ainsi que deux de ses avantages :

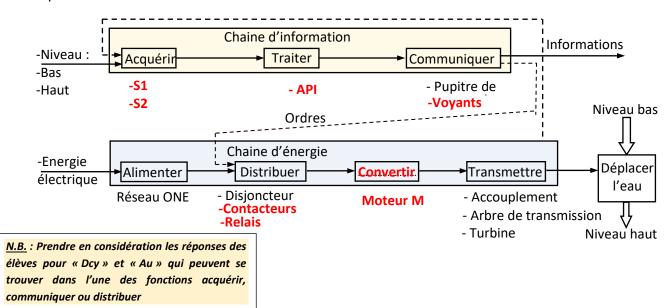
/0,75pt


Type : Accouplement élastique

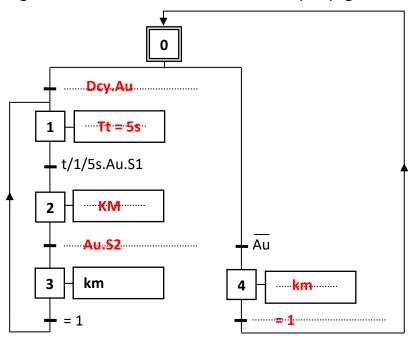
Deux avantages : - Permet un léger déplacement de la position relative des arbres

- Amortir les vibrations

- Assurer la souplesse de la transmission


d-Compléter la représentation graphique de la liaison complète démontable, à l'échelle du dessin, entre <u>l'arbre</u>
 2 et la <u>turbine</u> 5 (modifiée), assurée par la <u>clavette parallèle</u> 3, et un serrage en bout de cet arbre par <u>l'écrou hexagonal</u> 62, la <u>rondelle Grower</u> 61 et la <u>rondelle plate</u> 60 : /4pts

Tâche 1.3 : Eude partielle de l'automatisation du fonctionnement du château d'eau :


Le système d'automatisation du fonctionnement du château est équipé partiellement d'un bouton de départ cycle \mathbf{Dcy} et d'un bouton d'arrêt d'urgence \mathbf{Au} . Une durée $\mathbf{Tt} = \mathbf{5} \mathbf{s}$, de temporisation est nécessaire pour éviter les démarrages fréquents du moteur.

a- Compléter la chaîne d'énergie et la chaîne d'information suivantes, spécifiques à l'unité de pompage de l'eau potable au château : /2pts

b- Compléter le **GRAFCET** point de vue partie commande par les éléments assurant les fonctions génériques dans la chaîne d'énergie et la chaîne d'information de l'unité de pompage de l'eau potable : /1,5pt

c- Compléter, à partir de l'équation donnée ci-dessous, spécifique à l'arrêt du moteur commandant la pompe, le tableau de *Karnaugh* relatif à cette équation : /2pts

$$km = \overline{Au} + Au.S2$$

km			Dcy	.Au	
		00	01	11	10
	00	1	0	0	1
C1 C2	01	1	1	1	1
S1.S2	11	1	<u>1</u>	1	1
	10	1_/	0	0	1

d-A l'aide des simplifications effectuées sur le tableau de Karnaugh, donner la nouvelle équation de km : /2pts

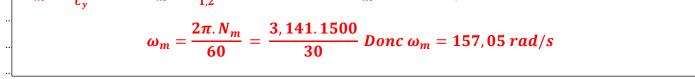
$$km = \overline{Au} + S2$$

SITUATION D'EVALUATION 02:

Tâche 2.1 : Détermination de quelques caractéristiques de la pompe :

a- Calculer le travail W_{0-3} (en J/Kg), de la pompe centrifuge, en appliquant l'équation de *Bernoulli* entre les points 0 et 3.

$$W_{0-3} = \frac{P_3 - P_0}{\rho} + \frac{V^2_3 - V^2_0}{2} + g(Z_3 - Z_0) - J_{0-3}$$


$$Donc W_{0-3} = 0 + 0 + 10.(35 - 0) + 52.5 \quad D'ou W_{0-3} = 402.5 J/Kg$$

b-Calculer le débit massique **Q**_m (en **Kg/s**) de la pompe :

/1pt

$$Q_m = \rho. Q_v \quad Donc \quad Q_m = 0,03.10^3 \quad D'ou \ Q_m = 30 \ Kg/s$$

الصفحة 5 RR - 45	موحد للبكالوريا - الدورة الاستدراكية 2025 – عناصر الإجابة	* .	
9	شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية	- مادة: علوم المهندس- أ	
c- Calculer la puissa	nce hydraulique P _P (en W) de la pompe :		/1p
	$P_P = Q_m \cdot W_{0-3} = 30.402, 5 Donc P_P = 12075 W$		
•	moteur électrique adéquat pour la pompe centrifuge : ance mécanique P_m (en kW) du moteur électrique (M) , so 85 et celui de l'accouplement est $\eta_{Acc} = 1$: (Prendre $P_P = 12$)	•	de / /2pt
•	ance mécanique \mathbf{P}_{m} (en \mathbf{kW}) du moteur électrique (\mathbf{M}), sa	•	
pompe est $\eta_p = 0$,	ance mécanique P_m (en kW) du moteur électrique (M), so 85 et celui de l'accouplement est $\eta_{Acc} = 1$: (Prendre $P_P = 12$	nt que la cylindrée de la po	/ 2p 1
b- Calculer la fréque centrifuge est : C	ance mécanique P_m (en kW) du moteur électrique (M), sa 85 et celui de l'accouplement est $\eta_{Acc} = 1$: (Prendre $P_P = 12$ $P_m = \frac{P_p}{\eta_p \cdot \eta_{Acc}} = \frac{12,25}{(0,85) \cdot (1)} = 14,411 kW$ ence de rotation N_m (en tr/min) du moteur électrique sacha	nt que la cylindrée de la po	/2pt

c-Calculer le couple moteur $\emph{C}_{\emph{m}}$ (en $\emph{N.m}$) : ($Prendre\ \omega_{\emph{m}}=158\ rad/s$) /2pts

$$C_m = \frac{P_m}{\omega_m} \ donc \ C_m = \frac{14411}{158}$$
 Donc $C_m = 91, 20 \ N. \ m$

d-Choisir le moteur adéquat pour la pompe :

Référence	Puissance nominale (kW)	Vitesse nominale (tr/min)	Couple nominal (N.m)
LS 160 LR	15	1500	96

Tâche 2.3 : Etude de la torsion simple de l'arbre 2 de la pompe :

a- Calculer, en appliquant la condition de rigidité, le diamètre minimal Dmini (en mm) de l'arbre 2 : /2pts

$$\theta \leq \theta_{lim} \ donc \ \frac{M_t}{G.I_o} \leq \theta_{lim} \ avec \ I_o = \frac{\pi . D^4}{32}$$

$$\frac{32 . M_t}{G.\pi.\theta_{lim}} \leq D^4 \ donc \ D \geq \left(\frac{32 . M_t}{G.\pi.\theta_{lim}}\right)^{1/4}$$

$$Donc \ D \geq \left(\frac{32 . 96 . 1000}{8.10^4 . 3,141 . 3,49 . 10^{-6}}\right)^{1/4} \ donc \ D_{mini} = 43,262 \ mm$$

b-Calculer, pour l'arbre **2** supposé comme une poutre cylindrique pleine de diamètre constant D_{plein} = **44** mm, la contrainte tangentielle maximale τ_{maxp} (en N/mm²), avec M_t = C_m = **96** N.m : /2pts

$$\tau_{maxp} = \frac{M_t}{I_0} \cdot \frac{D}{2} = \frac{16 \cdot M_t}{\pi \cdot D^3}$$

$$\tau_{maxp} = \frac{16.96.10^3}{3.141.44^3} = 5,73 \ N/mm^2$$

c- On souhaite remplacer l'arbre 2 plein par arbre creux de diamètre D = 44 mm avec d = 0,5 x D. Pour cela, calculer l'angle unitaire de torsion θ_c (en rad/mm) pour l'arbre creux supportant le même couple M_t =96 N.m et comparer cette valeur trouvée avec θ_{lim} de l'arbre plein. Voir DRES (page 16/18) : /2pts

$$\theta_c = \frac{M_t}{G \times I_0} = \frac{32 \times M_t}{G \times \pi \times (D^4 - d^4)}$$

$$\theta_c = \frac{32 \times 96.10^3}{8 \times 10^4 \times 3,141 \times 44^4 (1 - 0,5^4)} = 3,47 \times 10^{-6} \ rad/mm$$

Comparaison:

$$(\theta_c = 3,47 \times 10^{-6} \ rad/mm) < (\theta_{lim} = 0,2^{\circ}/m = 3,49 \times 10^{-6} \ rad/mm)$$

- **d**-On souhaite choisir, pour la pompe centrifuge, parmi ces deux arbres ayant la même longueur ℓ, celui le plus résistant et le plus léger. Pour cela, on donne :
 - $\Rightarrow m_p$: masse de l'arbre plein et S_p sa section;
 - \Rightarrow m_c : masse de l'arbre creux, S_c sa section et **d** son diamètre intérieur;
 - \Rightarrow On sait que Le rapport des masses est égal au rapport des sections tel que : $\mathbf{k} = \frac{m_c}{m_n} = \frac{S_c}{S_n}$.
 - ${f d_{1^-}}$ Calculer la valeur du rapport ${\it k}$ et comparer les deux masses :

/1pt

$$k = \frac{m_c}{m_p} = \frac{S_c}{S_p} = \frac{D^2 - d^2}{D^2} = 1 - \frac{d^2}{D^2} = 1 - (0, 5)^2 = 0, 75$$

D'ou: $m_c < m_p$

 d_2 - Quel est l'arbre adéquat choisi pour la pompe centrifuge. Justifier votre réponse :

/1pt

L'arbre adéquat choisi pour notre pompe centrifuge est l'arbre creux, car :

- -II supporte une déformation $\theta_c < \theta_{limite}$ de l'arbre plein ;
- -Il a une masse plus légère que l'arbre plein.

SITUATION D'EVALUATION 03:

Tâche 3.1 : Analyse du dessin de définition :

a-Identifier et expliquer la désignation du matériau de l'arbre 2 :

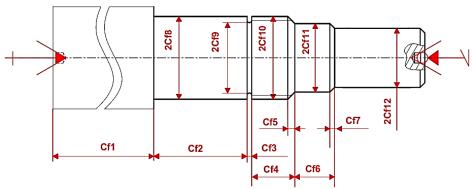
/2pts

16 Cr Ni 6 : Acier faiblement allié avec 0,16% de carbone, 1,5% de chrome et quelques traces de Nickel.

b-Donner le procédé d'obtention du brut de l'arbre 2 :

/0,5pt

Laminage


c-Compléter le tableau suivant des spécifications géométriques relatives à l'arbre 2 :

/3pts

Symbole	Nom de la tolérance	Type de la tolérance
	Perpendicularité	······ Orientation
0	Coaxialité	Position
<i>\(\(\lambda \)</i>	····· Cylindricité ······	Forme

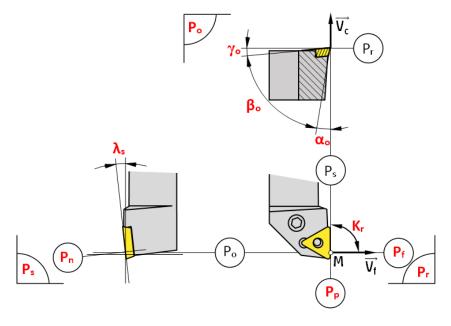
Tâche 3.2 : Étude de la phase 40

a-Mettre en place, sur le croquis de phase suivant, les symboles technologiques (2^{ème} norme) de **mise** en position : /2,5pts

b-Installer, sur le dessin ci-dessus, les cotes fabriquées (sans valeurs) réalisées dans cette phase :

c-Donner les spécifications géométriques obtenues dans cette phase :

/3pts /2pts


D4 众 0,005 F2 📙 0,01 D4

d-Citer deux types d'usure de l'outil et leurs critères associés :

/2pts

Type de l'usure	Critère associé
Usure en dépouille	VB
Usure en cratère	KT

e-Sur le croquis de l'outil en main suivant, inscrire les repères des plans (P_f , P_s , P_o , P_n , P_r , P_p), des angles de face orthogonaux (α_o , β_o , γ_o) et des angles d'arrêtes (λ_s , k_r):

الصفحة	\bigcap
8	RR - 45
9	

f- Compléter le tableau suivant :

/2pts

Repère	Nom du plan	Définition du plan
Pr	Plan de référence	C'est le plan parallèle au plan de base et passant par le point considéré M de l'arête de coupe.
Ps	Plan d'arête de l'outil	C'est le plan perpendiculaire au plan de référence Pr, tangent à l'arête de coupe, au point considéré M.

g-Montrer que l'effort de coupe Fc = 1280 N :

/2pts

$$F_c = a \times f \times K_c = 320 \times 10 \times 0.2 \times 2 = 1280 \text{ N}$$

h-Déterminer la puissance Pu (en kW) utile à la coupe :

/2pts

$$i$$
- Déduire la puissance P_{cm} (en kW) que le moteur de la machine doit fournir :

 $P_u = F_c \times V_c = 1280 \text{ x } 100/60 = 2133,33 \text{ W} = 2,133 \text{ kW}$

/2pts

$$\eta = \frac{P_u}{P_{cm}} \Rightarrow P_{cm} = \frac{P_u}{\eta} \Rightarrow P_{cm} = \frac{2,133}{0,7} = 3,047 \text{ kW}$$

j- Choisir la référence de la machine optimale :

/2pts

Tr 04

<u>Tâche 3.3 : Elaboration des cartes de contrôle</u>

(Pour tous les calculs prendre trois chiffres après la virgule)

a-Calculer les dimensions (en mm) maximale D_{4max} et minimale D_{4min} du diamètre D_4 :

/2pts

$$D_{4max} = D_N + es = 82 + 0,025 = 82,025$$

 $D_{4max} = .82,025 mm$

$$D_{4min} = D_N + ei = 82 + 0.003 = 82.003$$

 $D_{4min} = 82,003 \text{ mm}$

b-Calculer, pour les **10** échantillons, la moyenne des moyennes $\overline{m{X}}$ et la moyenne des étendues $m{ar{R}}$:

 $\overline{\overline{X}} = (\sum_{1}^{10} \overline{X_{i}})/10 = \frac{82,011+82,013+82,010+82,009+82,013+82,012+82,014+82,013+82,012+82,013}{10}$

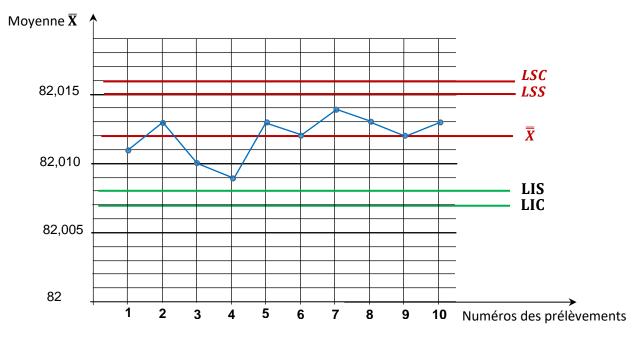
$$\overline{R} = (\sum_{1}^{10} R_i)/10 = \frac{0,004+0,009+0,011+0,013+0,008+0,007+0,009+0,006+0,008+0,005}{10}$$

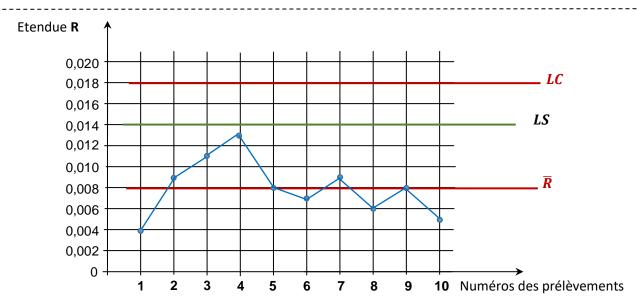
c-Calculer les limites supérieures de supervision LSS et de contrôle LSC de la carte des moyennes :

LSS =
$$\overline{X}$$
 + $(A'_S \times \overline{R})$ = 82,012 + $(0,377 \times 0,008)$ LSS = 82,015

$$LSC = \overline{\overline{X}} + (A'_{C} \times \overline{R}) = 82,012 + (0,594 \times 0,008)$$

LSC = 82,016


 ${f d}$ -Calculer la limite de contrôle supérieure ${f LC}$ pour la carte des étendues :


/1pt

$$LC = D'_C \times \overline{R} = 2,36 \times 0,008$$

LC = 0.018

e-Tracer sur les cartes de contrôle suivantes les caractéristiques $\overline{\overline{X}}$, \overline{R} , LSS, LSC et LC ainsi que l'évolution de la moyenne et de l'étendue au cours du temps : /6,25pts

- **f- Analyser** les cartes de contrôle de la moyenne et de l'étendue et **déterminer** les observations, les interprétations et les mesures à prendre : /1pt
 - Pas de grande variation de la moyenne
 - Le processus est bien réglé
 - Pas de corrections à envisager

- Pas de grande variation de l'étendue
- Processus stable
- Pas de corrections à envisager