

La fonction transmettre:

Classe:2 bac SmbFes

Les liaisons mécaniques

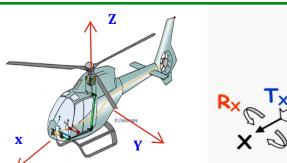
1.DEFINITION D'UN MECANISME :

UUn mécanisme est un ensemble de pièces mécaniques reliées entre elles par des liaisons.

Cet ensemble est conçu pour réaliser une ou plusieurs fonctions. Nous le schématiseron pour en simplifier la compréhension.

QQuand une pièce est en contact avec une autre, il y a entre ces deux pièces une liaison mécanique.

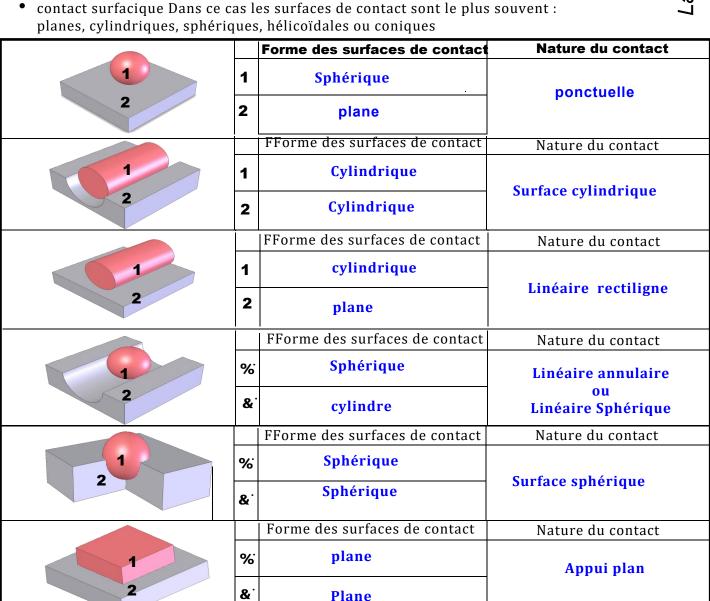
2.DEGRES DE LIBERTE D'UNE LIAISON:


Une objet libre dans l'espace (un avion) peut se déplacer dans un repère R (oxyz) selon 6 mouvements :

• 3 TRANSLATIONS:

- ✓ Tx: Translation suivant l'axe
- ✓ Ty: Translation suivant l'axe
- ✓ T_z: Translation suivant l'axe

• 3 ROTATIONS:


- ✓ Rx: Rotation autour de l'axe
- ✓ Ry: Rotation autour de l'axe
- ✓ Rzz: Rotation autour de l'axe

3.Formes de contacts

00n peut distinguer 3 types de contacts entre solides :

- · contact ponctuel
- contact linéaire (la ligne n'est pas forcément une droite)

akhlil

Tableau des liaisons normalisées

Nom	degrés de liberté	Représentation plane	Représentation 3D	Exemples
Encastrement	0 T 0R			2 soudure
Pivot	0T 1 R	ou \vec{j}	\vec{z}	
Glissière	1 T 0R	\vec{y}	\vec{y}	
Hélicoidale	1R et 1T conjuguée	filet à droite $\overrightarrow{y}_{\overrightarrow{x}}$ ou $\overrightarrow{y}_{\overrightarrow{z}}$	y v v	ecrou vis
Pivot glissant	1R 1T			
Rotule ou Sphérique	0Т 3 R	$ec{ec{y}}_{ec{ec{x}}}$	\vec{z}	
Rotule a doigt	0T 2R	\vec{y}	\vec{y}	
Appui plan	2T 1R	$ec{m{y}}_{oxedsymbol{oxedsymbol{ar{z}}}}$	\vec{z}	
Linéaire Annulaire ou circulaire	3R 1T	$\vec{v}_{\vec{x}}$	\vec{z}	2) syntry date cylende
Linéaire rectiligne	2 T 2 R	$ec{ec{y}}_{ec{ec{x}}}$ $ec{ec{y}}_{ec{ec{z}}}$	\vec{z}	
Ponctuelle	3 R 2T	$\vec{v}_{\perp \vec{x}}$	\$7	

3.Étapes pour réaliser un schéma cinématique d'un mécanisme

1.Identifier le bâti (solide fixe)

Toujours commencer par déterminer la pièce qui sert de référence fixe.

2. Identifier les classes d'équivalence:

Réunir les pièces solidaires (soudées, vissées sans mouvement relatif, encastrement)

3. Recenser les liaisons mécaniques

Pour chaque paire de solides, déterminer la liaison : pivot, glissière, rotule, encastrement, etc.

Noter aussi l'axe ou la direction de la liaison.

4. Tracer le graphe de liaison

Chaque solide (ou classe d'équivalence de solides) est représenté par un nœud (un point ou un cercle).

Chaque liaison mécanique entre deux solides est représentée par une arête (un trait reliant deux nœuds).

5.Représenter les liaisons avec leurs symboles normalisés

utilise les symboles indiquer dans le tableau des liaisons Réspecter les axes de rotation ou de translation.

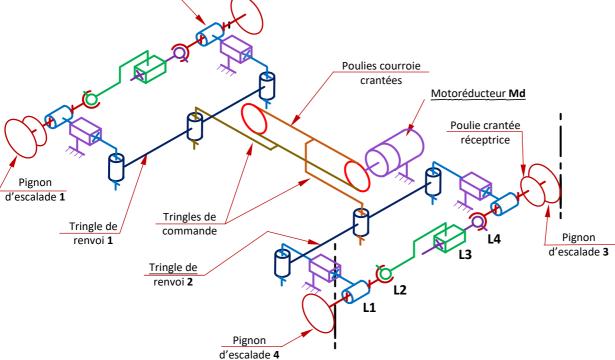
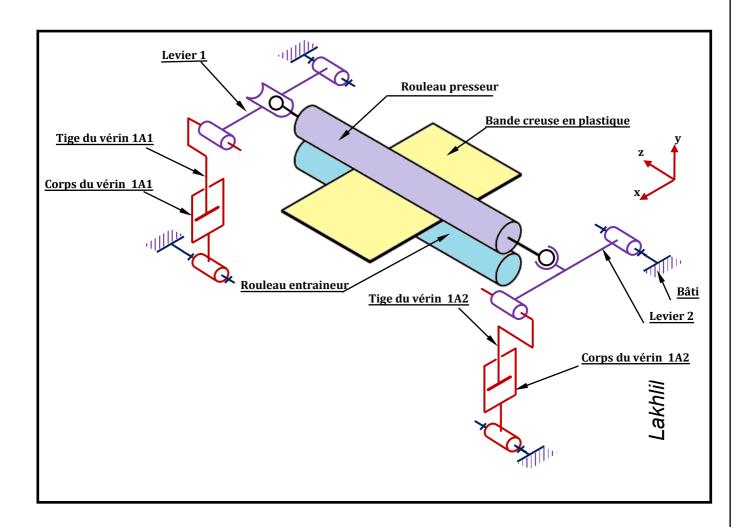

Exercice 1

Schéma cinématique du module de déploiement des bras rétractables en position déployés

Identifier les liaisons L1, L2, L3 et L4 du schéma cinématique du module de déploiement des bras rétractables


en complétant le tableau.

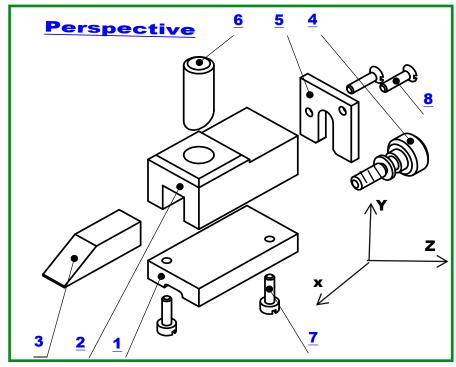
	Liaison	Nom de la liaison	Nombre de degrés de liberté
	L1		
	L2		
	L3		
Chaine	L4		
Fourche		Poulies courroie	
		crantées	Motoréducteur Md

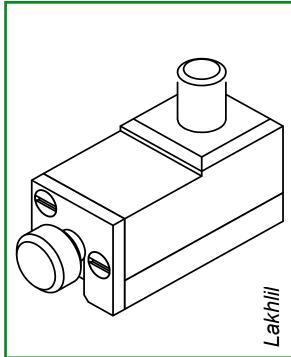
Exercice 2

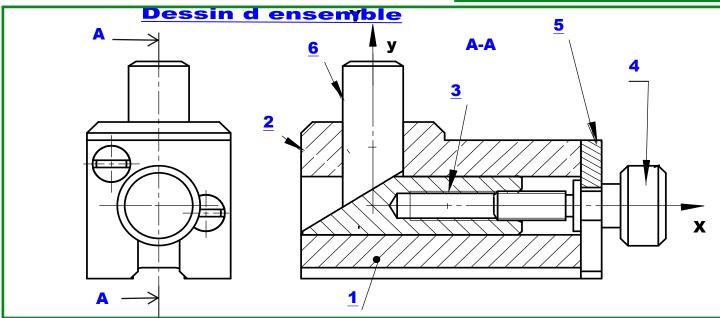
Schéma cinématique du système de réglage de la hauteur entre le rouleau entraineur et le rouleau presseur

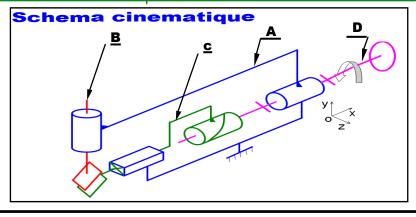
Identifier les liaisons du système de réglage de la hauteur entre le rouleau entraineur et le rouleau presseur en complétant le tableau par les noms des liaisons et par des croix « **X** » indiquant les degrés de liberté.

Liaison entre	Nom de la liaison	Degrés de liberté						
Liaison enti e	Nom de la maison	Tx	Ty	Tz	Rx	Ry	Rz	
Le levier 2 et le bâti								
Le levier 2 et la tige du vérin 1A2								
Le levier 2 et le rouleau presseur								
Le levier 1 et le rouleau presseur								


Exercice 3


Borne Réglable


Mise en situation:

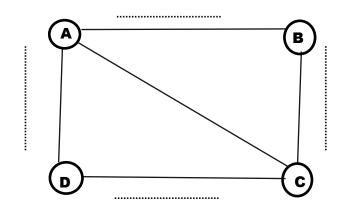

la borne reglable est une cale réglable en hauteur utilisée pour positionner une pièce par rapport à un plan horiontal. **FFonctionnement :**

LLa rotation de la vis 4 permet la translation horizontale de la pièce 3 et la translation verticale du cylindre 6.

N	Repl	Nbr	Désignation
	1	1	semelle
	2	1	Corps
	3	1	Cale pentue
	4	1	Vis moletée
	5	1	Plaquette d'arrêt
	6	1	butée
	7	2	Vis cylindrique fendue V
	8	2	Vis tête fraisée plate fendue

Borne Réglable

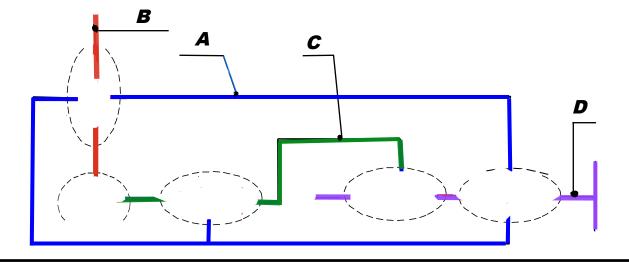
Exercice 4


1)Identifier les classes d'équivalence de la borne réglable:

$$B = \{6\}$$

$$C = \{....\}$$
 $D = \{4\}$

$$D = \{4\}$$


2) Completer le graphe des liaisons de l'ensemble :

3) Compléterle tableau des des liaisonsci-dessous:

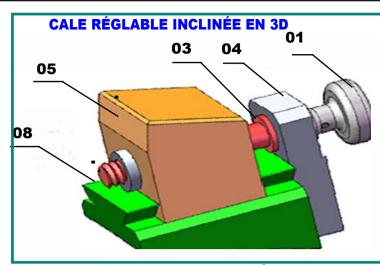
	Nom de la liaison	Degrés de liberté	Schématisation
Aet B		T = R =	
A et D		T = R =	
Aet C		T = R =	
Det C		T = R =	
BetC		T = R =	

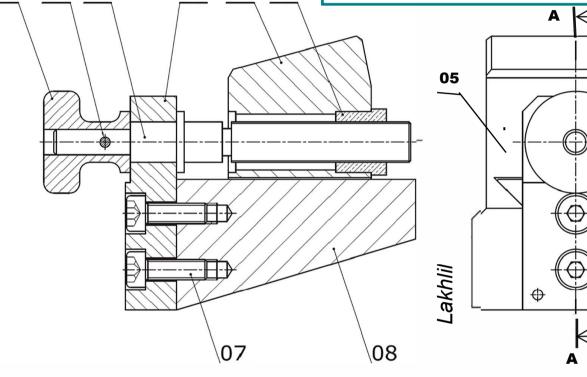
4) Compléter le schéma cinématique par les symboles des liaisons correspondantes

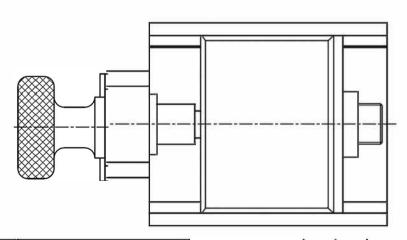
8

09

Exercice 5

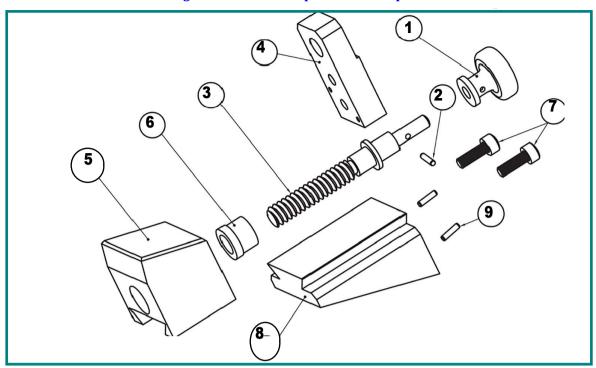

Liaison mécanique : Caleréglable inclinée


1-MISEEN SITUATION:


Cette cale réglable inclinée représentée par son dessin d'ensemble remplace des cales de différentes hauteurs. la rotation de la vis 3 par l'intermédiaire du Poigné **1** permet la translation suivant um plan incline du cale **5**.

2-DESSIN D'ENSEMBLE:

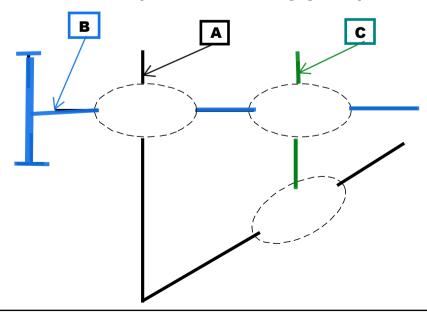
01 02 03 04 05 06

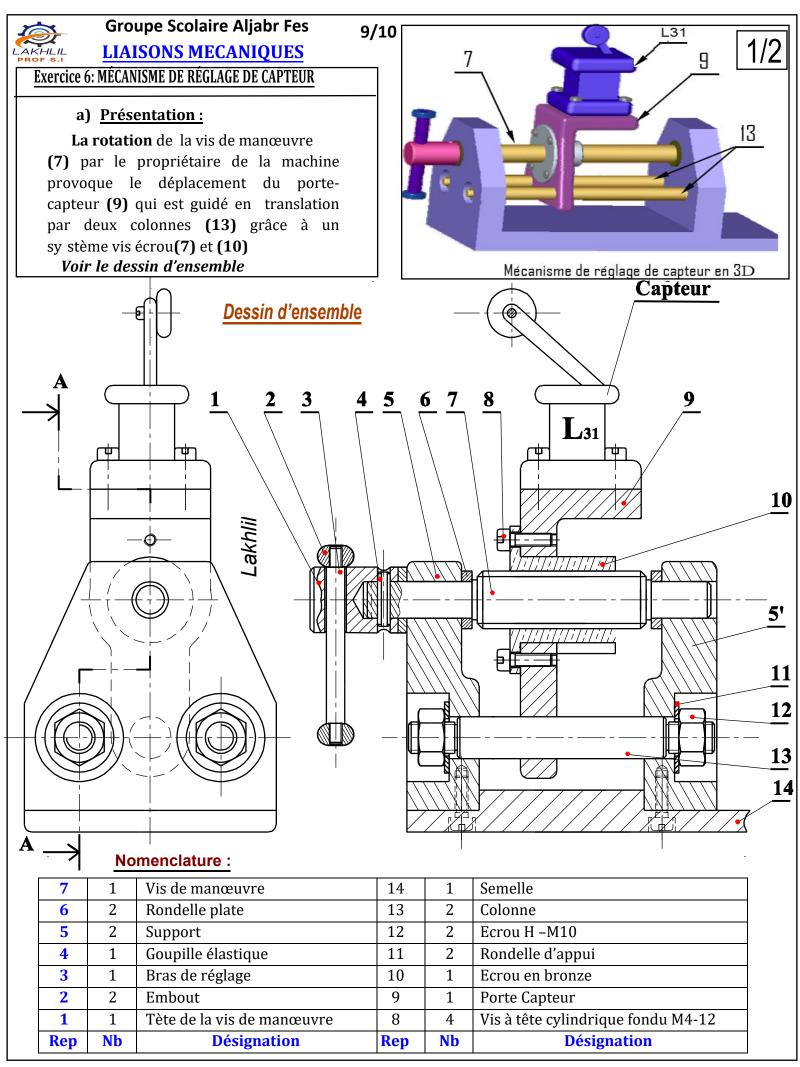


05	1	Cale
04	l	Plaque
03	1	Vis de Manœuvre
02	l	Goupille
01	I	Cvlindrique
Rp	Nb	PoignéDésignation

09	2	Goupille
08	1	Cylindrique
07	2	Semelle
06	I	Écrou Spécial
Rp	Nb	Désignation

La vue 3D éclatée du mécanisme : Cale réglable inclinéeles repères non incliqués:


ETUDE CINEMATIQUE:1) Identifier les classes d'équivalence de la borne réglable :

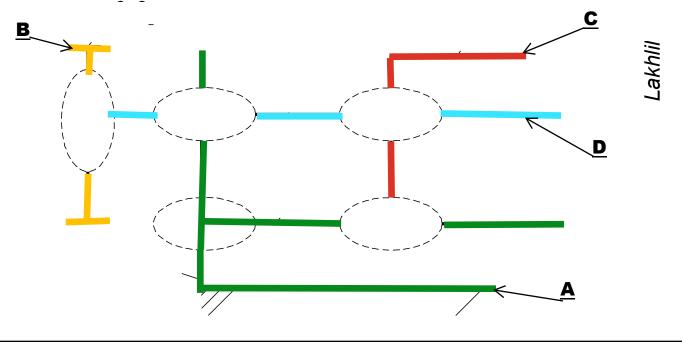

 $A = \{4,....$ $A = \{3,...$ $A = \{5,...$

2) Compléter le tableau de liaisons suivant :

désignation	désignation Symbole	Degrés de liberté T _X T _y Tz R _X R _y Rz					
	-	T _X	Ty	Tz	R _X	Ry	Rz

3) Compléter le schéma cinématique du mécanisme de réglage du capteur

ETUDE CINEMATIQUE: A partir du dessin d'ensemble


1) Compléter les classes d'équivalence cinématique

A={5;}	D={1,6,}
B={3,}	C= {9,}

2) Compléter le tableau de liaisons suivant :

Pièces	Nature de liaison	Mouvements relatifs	Symbole
B/D		Translations Rotations	
A/D		Translations Rotations	
C/D		Translations Rotations	
A/C		Translations	

3) Compléter le schéma cinématique du mécanisme de réglage du capteur

