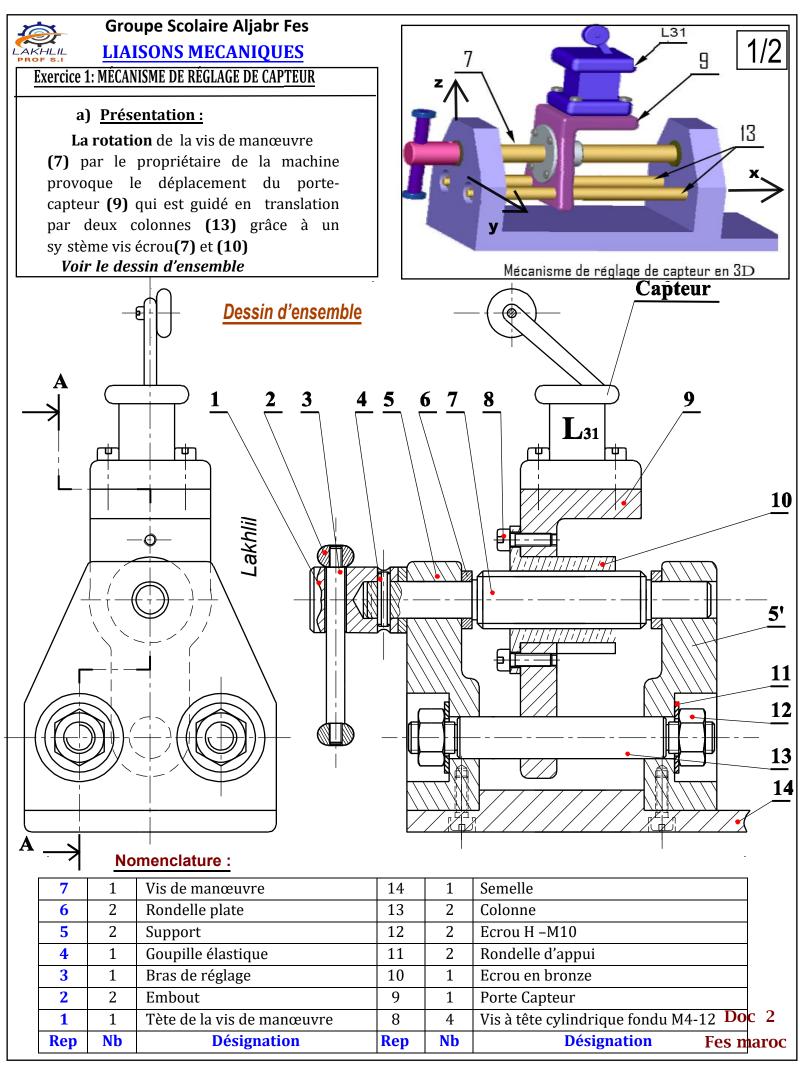


2bac SM 2

Exercices avec solution

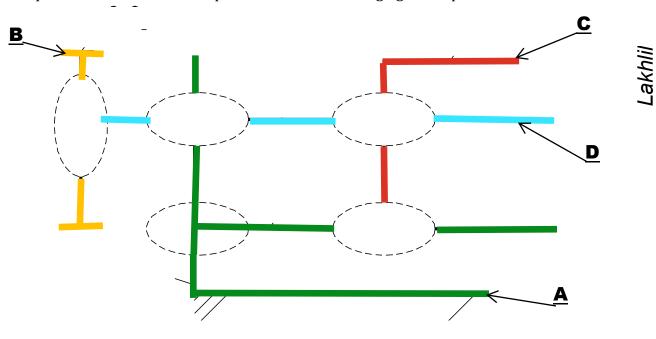

MODÉLISATION DES LIAISONS MÉCANIQUES

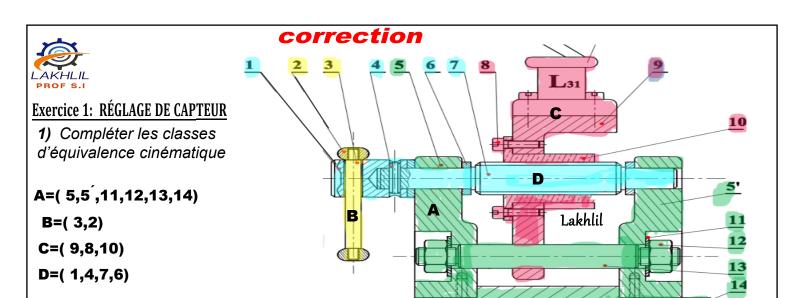
L'objectif de l'étude des liaisons mécaniques est de comprendre comment les différentes pièces d'un mécanisme sont reliées entre elles et comment ces liaisons influencent les mouvements possibles du système.

Voici les principaux objectifs :

- 1 dentifier les liaisons entre les pièces
- Déterminer les mouvements possibles
- Modéliser le mécanisme à l'aide de schémas cinématiques ou de graphes de liaisons.

ETUDE CINEMATIQUE: A partir du dessin d'ensemble

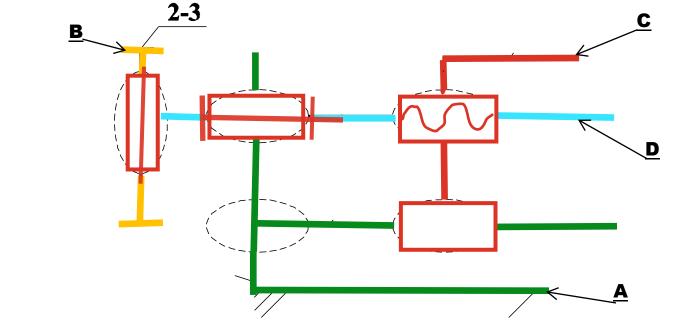

1) Compléter les classes d'équivalence cinématique


A={5;}	D={1,6,}
B={3,}	C= {9,

2) Compléter le tableau de liaisons suivant :

Pièces	Nature de liaison	Degrés de l	iberté	Symbole
B/D		T _X T _y Tz R _y		
A/D				
C/D				
A/C				

3) Compléter le schéma cinématique du mécanisme de réglage du capteur

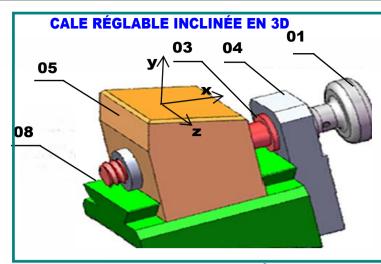


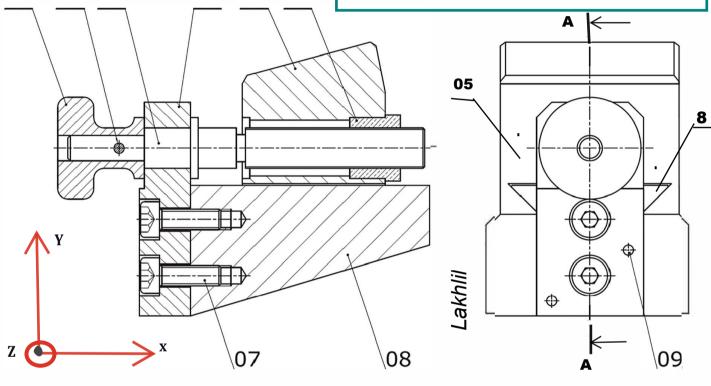
2) Compléter le tableau de liaisons suivant :

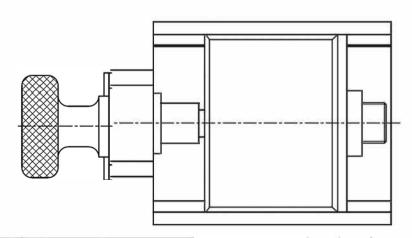
Pièces	Nature de liaison	Degrés de liberté			bert	:é	Symbole	
		T _X T _y		T _X T _y Tz R _X R _y Rz		Rz		
B/D	pivot glissant	0	0	1	0	0	1	
A/D	pivot	0	0	0	1	0	0	+
C/D	hélicoïdal	1	0	0	1	0	0	
A/C	glissière	1	0	0	0	0	0	

3) Compléter le schéma cinématique du mécanisme de réglage du capteur

Fes maroc

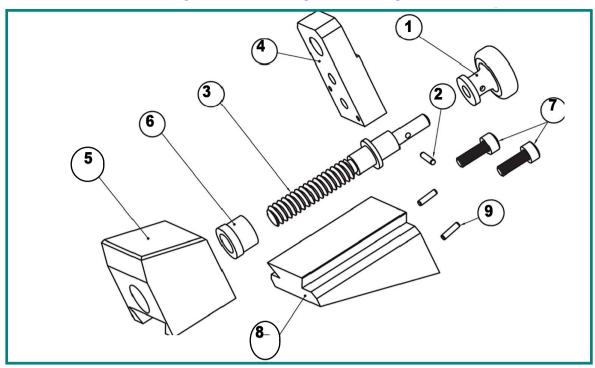

Exercice 2 Liaison mécanique : Caleréglable inclinée


1-MISEEN SITUATION:


Cette cale réglable inclinée représentée par son dessin d'ensemble remplace des cales de différentes hauteurs. la rotation de la vis 3 par l'intermédiaire du Poigné **1** permet la translation suivant um plan incline du cale **5**.

2-DESSIN D'ENSEMBLE:

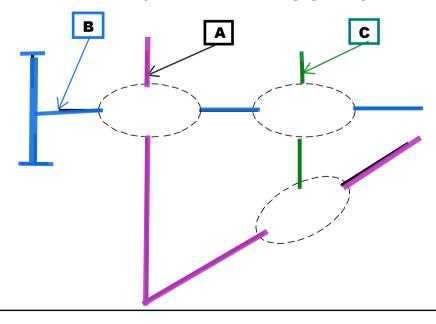
01 02 03 04 05 06

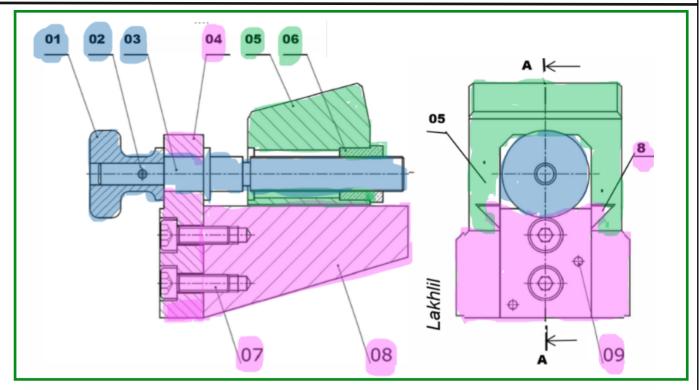


05	1	Cale
04	l	Plaque
03	1	Vis de Manœuvre
02	l	Goupille Cvlindrique
01	I	Poigné
Rp	N	Désignation

	09	2	GoupilleCylindrique
	08	1	Semelle
	07	2	Vis d'assemblage
	06	I	Écrou Spécial
Do	Rp	Nb	Désignation

La vue 3D éclatée du mécanisme : Cale réglable inclinéeles repères non incliqués:


ETUDE CINEMATIQUE:1) Identifier les classes d'équivalence de la borne réglable :


$$A = \{4,....$$
 $B = \{3,....$ $C = \{5,....$

2) Compléter le tableau de liaisons suivant :

	désignation	Symbole	Degrés de liberté
A/B			Translations Rotations
A/C			Translations Rotations
B/C			TranslationsRotations

3) Compléter le schéma cinématique du mécanisme de réglage du capteur

ETUDE CINEMATIQUE:1) Identifier les classes d'équivalence de la borne réglable :

$$A = \{4,7,8,9\}$$
 B

$$B = \{3,2,1\}$$

$$A = \{5,.6\}$$

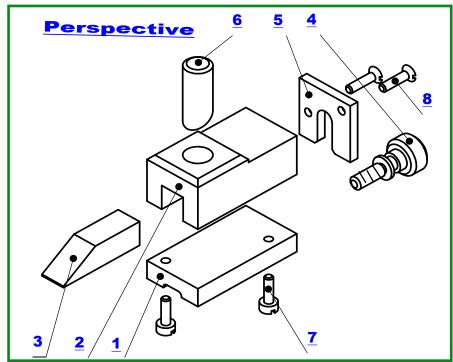
2) Compléter le tableau de liaisons suivant :

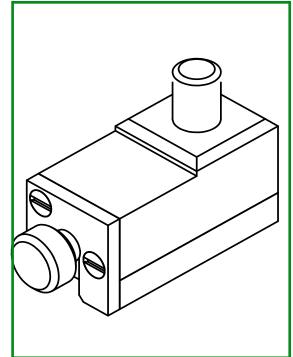
	désignation	Symbole	Degrés de liberté
A/B	pivot	+===+	0 Translations 1 Rotations
A/C	glissière		.1 Translations 0 Rotations
B/C	hélicoïdal		1 Translations 1 Rotations conjugués

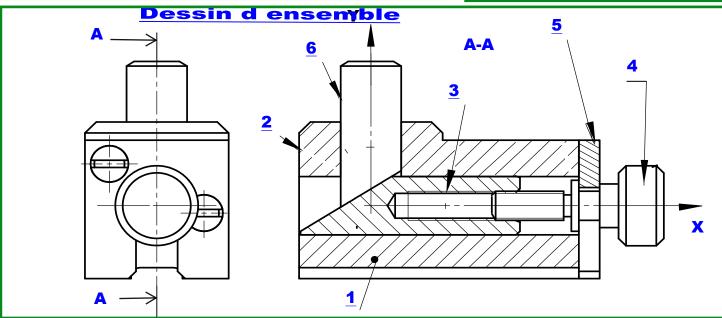
3)Compléter le schéma cinématique du mécanisme de réglage du capteur

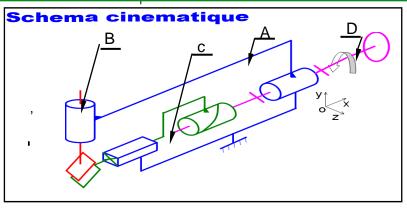
Les liaisons mécaniques

Exercice 3 : Borne Réglable


علوم المهندس شعبة العلوم الرياضية (ب₎ 2bac SM


1- Mise en situation :

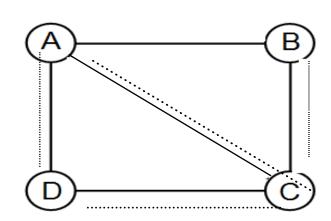

la borne reglable est une cale réglable en hauteur utilisée pour positionner une pièce par rapport à un plan horizontal.


2- Fonctionnement:

La rotation de la vis 4 permet la translation horizontale de la pièce 3 et la translation verticale du cylindre 6.

N°	Nbr	Désignation	
1	1	semelle	
2	1	Corps	
3	1	Cale pentue	
4	1	Vis moletée	
5	1	Plaquette d'arrêt	
6	1	butée	
7	2	Vis cylindrique à tête fendue	
8	2	Vis à tête fraisée plate fendu	

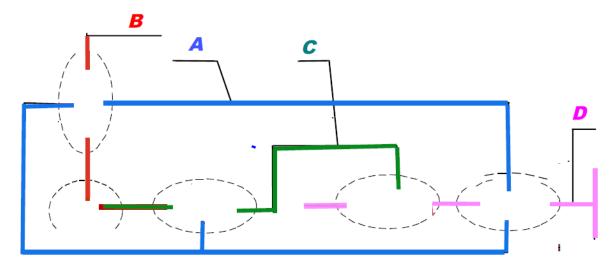
3) Identifier les classes d'équivalence de la borne réglable:


$$\mathsf{B} = \{6\}$$

$$D = \{4\}$$

$$D = \{4\}$$
; $C = \{......\}$

2) Completer le graphe des liaisons de l'ensemble :

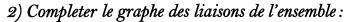


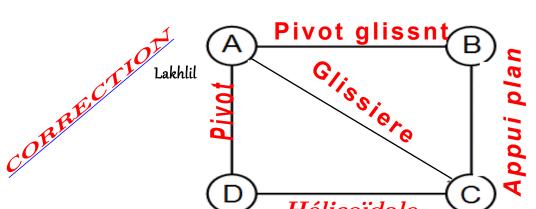
4. Completer le tableau des des liaisons ci-dessous:

	Nom de la liaison	Degrés de liberté	Schématisation
Aet B			
A et C			
B et C			
Bet D			

5. Compléter le schéma cinématique l par es symboles des liaisons correspondantes.

Les liaisons mécaniques

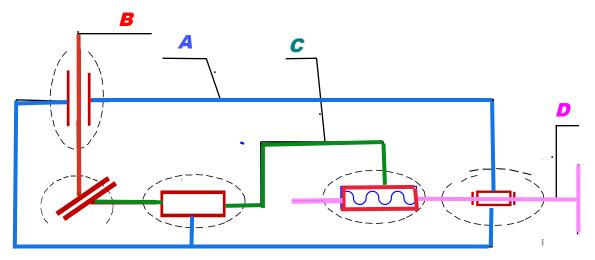

Exercice 3: Borne Réglable


ع**لوم الهندس** الشعبة العلوم الرياضية (ب₎ 2bac SM

3) Identifier les classes d'équivalence de la borne réglable :

$$A = \{1,2,5,7,8\}$$

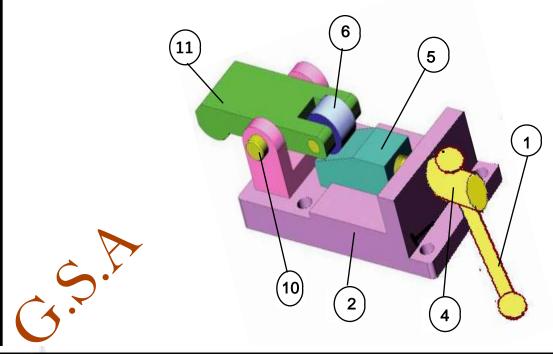
$$B = \{6\}$$
 $D = \{4\}$; $C = \{3\}$

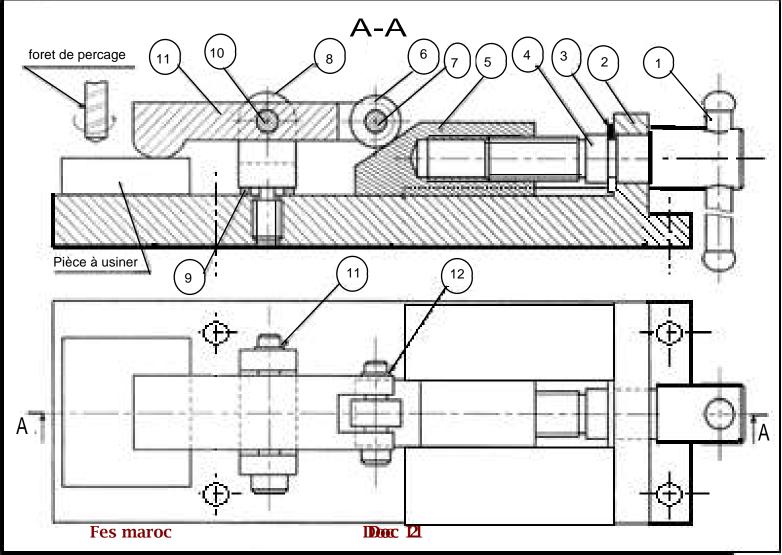


4. Completer le tableau des des liaisons ci-dessous:

	Nom de la liaison	Degrés de liberté	Schématisation
Aet B	Pivot glissant	T = 1 R =1	<u></u>
A et C	Glissiere	T = 1 R =0	
Det C	Hélicoïdale	T = 1 R = 1 conjuguée	
Aet D	Pivot	T = 0 R =1	—
Bet C	Appui plan	T = 2 R =1	

5. Compléter le schéma cinématique les symboles des liaisons correspondantes.




Modélisation des liaisons Exercice 4: DISPOSITIF DE SERRAGE

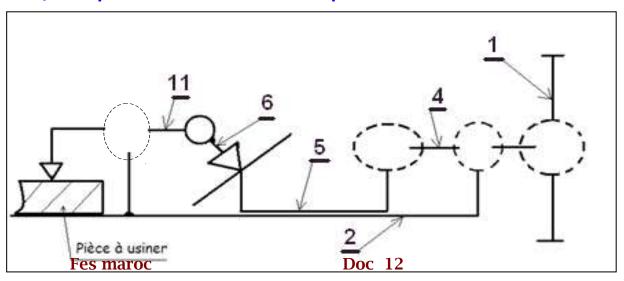
PRÉSENTATION:

Ce dispositif permet de bloquer une pièce afin de la percer. La rotation de la vis de manœuvre (4) par la manette (1) permet la translation du coulisseau (5) assurant

le pivotement de la bride (11) autour del'axe (10) permettant le serrage de la pièce percer.

DISPOSITIF DE SERRAGE

2bac SM 2


NOMENCLATURE:

13	1	Anneau élastique		
12	1	Anneau élastique		
11	1	Bride		
10	1	Axe		
9	1	Chape		
8	1	Rondelle		
7	1	Axe		
6	1	Galet		
5	1	Coulisseau		
4	1	Vis de manœuvre		
3	1	Anneau élastique		
2	1	Support		
1	1	Manette		
Rep	Nb	Désignation	Matière	Observations

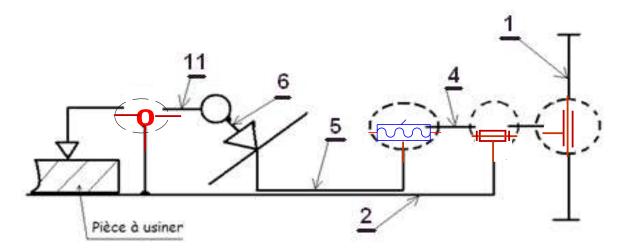
1/Compléter le tableau suivant :

Liaison	Mouvements relatifs	Désignation	S y m b o l _. e s
11 / 10	T =		
11 / 10	R =		
4/2	T =		
4/2	R =		
4/5	T =		
4/3	R =		
5/6	T =		
5/ 6	R =	***************************************	
1//	T =		
1/ 4	R =		

2/ Compléter le schéma cinématique ci-dessous

Exercice 4: DISPOSITIF DE SERRAGE

المادة علوم المهندس العلوم الرياضية (ب) 2bac SM 2

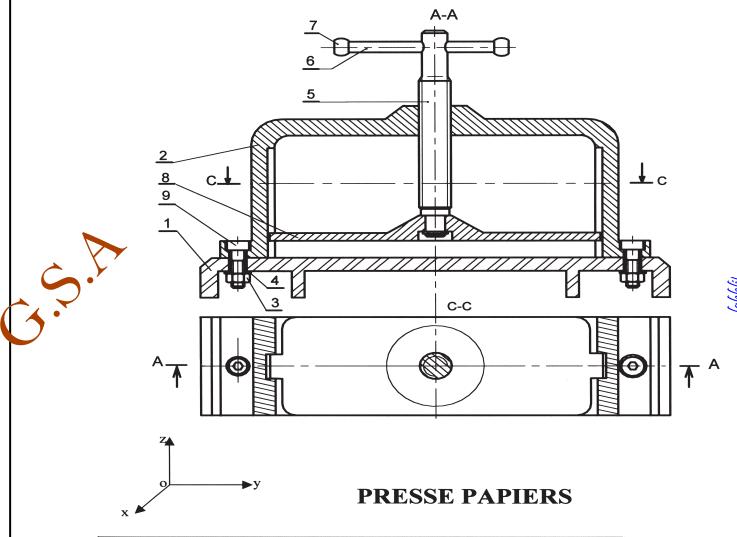

correction

1/Compléter le tableau suivant :

Liaison	Mouvements relatifs	Désignation	S y m b o l _. e s
11 / 10	T = 0 R = 1	pivot	ф—:
4/2	T = 0 R =1	pivot	—
4/5	T = 1 R = 1 conjuguée	Hélicoïdale	- -
5/6	T = 1 R = 3	Linéaire annulaire	
1/4	T = 1 R = 1	pivot glissant	<u></u>

Lakhlil

2/ Compléter le schéma cinématique ci-dessous

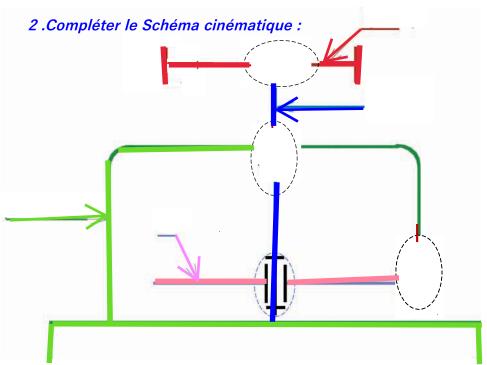

Modélisation des liaisons

Exercice 5: Presse papiers

المادة علوم المهندس الشعبة العلوم الرياضية (ب) 2 2bac SM

Le presse papiers représenté par son dessin d'ensemble, sert à presser des papiers lors de l'opération de plastification. La rotation de la vis de manœuvre (5), assure le déplacement du sommier (8) guidé en translation par le portique (2), ce qui permet de presser les papiers entre le sommier (8) et la semelle (1).

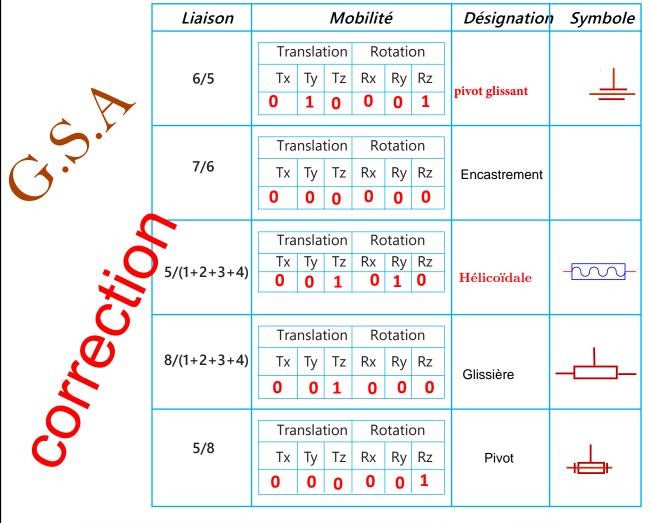
Rp	Nb	Désignation	Matière	Observation
1	1	Semelle	Aluminium EN AW-2017	
2	1	Portique	Acier C 30	
3	2	Ecrou	Acier C 35	
4	2	Rondelle plate	Acier S 275	
5	1	Vis de manœuvre	Acier C 35	
6	1	Levier de commande	Acier C 50	
7	2	Embout	Acier E 235	
8	1	Sommier	Acier C 22	
9	2	Vic à tête cylindrique creuse	Acier C 35	

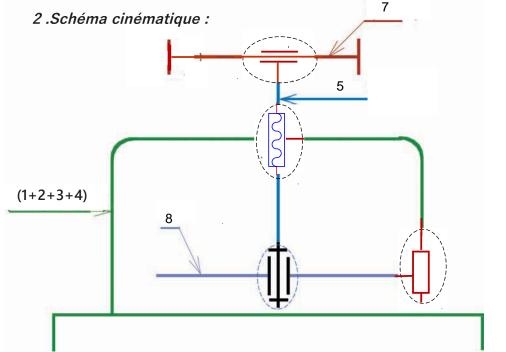


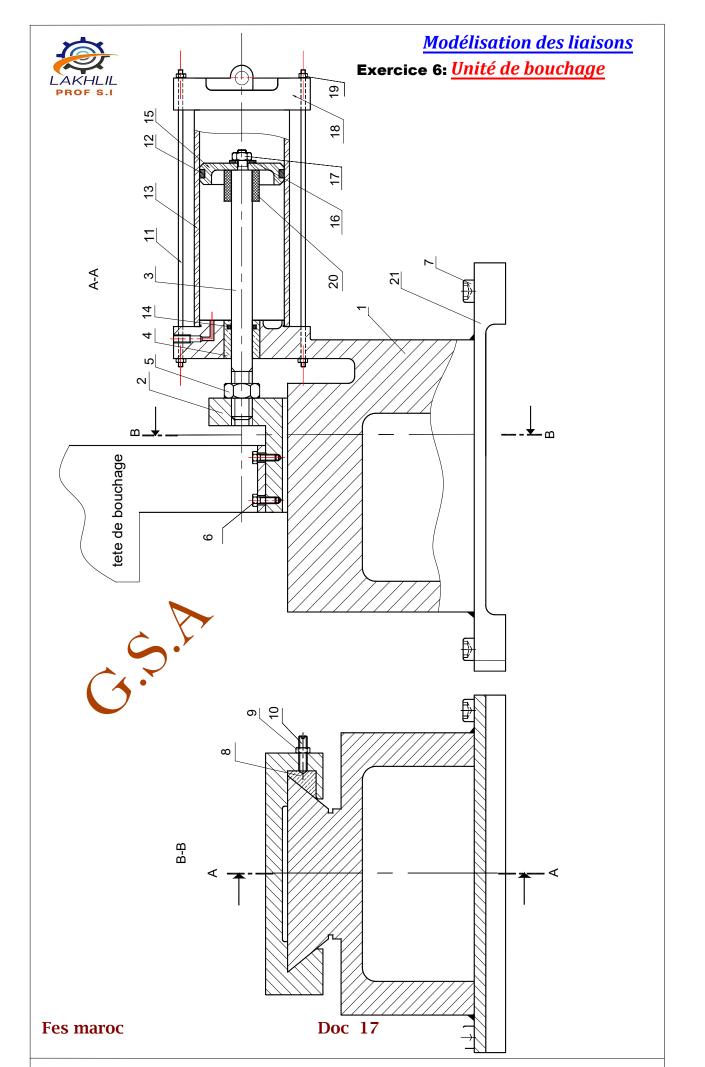
Modélisation des liaisons **Presse papiers**

1- Identifier, sur le tableau suivant, les liaisons élémentaires du presse-papiers :

Liaison			Mo	bilit	é		Désignation	Symbole
	Tra	nsla	tion	Ro	otatio	on		
6/5	Tx	Ту	Tz	Rx	Ry	Rz		
	Tra	nsla	tion	Ro	otatio	on		
7/6	Tx	Ту	Tz	Rx	Ry	Rz		
	Tra	nsla	tion	Ro	otatio	on		
5/(1+2+3+4)	Tx	Ту	Tz	Rx	Ry	Rz		
3, (1121314)								
	Tra	nsla	tion	Ro	otatio	on		
8/(1+2+3+4)	Tx	Ту	Tz	Rx	Ry	Rz		
	Tra	nsla	tion	Ro	otatio	on		
5/8	Tx	Ту	Tz	Rx	Ry	Rz		
	0	0	0	0	0	1		


Modélisation des liaisons


Exercice 5: Presse papiers


المادة علوم المهندس العلوم الرياضية (ب) 2bac SM 2

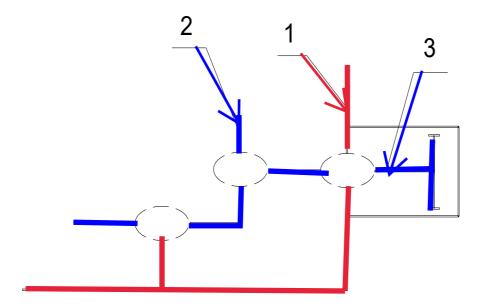
CORRECTION

1- Identifier, sur le tableau suivant, les liaisons élémentaires du presse-papiers :

Modélisation des liaisons

Unité de bouchage

Analyse Technologique

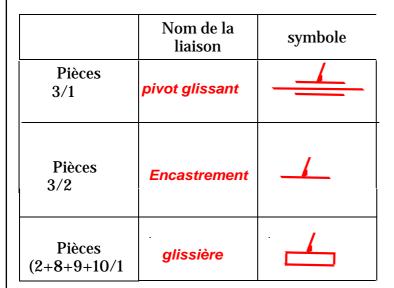

Etude des liaisons

a) Compléter le tableau des liaisons:

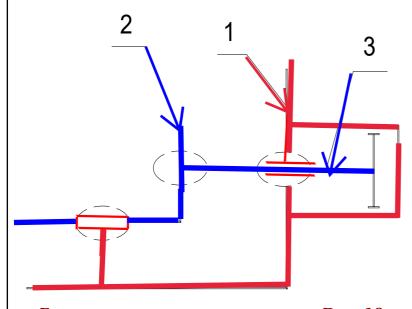
	Nom de la liaison	symbole
Pièces 3/1		
Pièces 3/2		
Pièces (2+8+9+10/1		

b)Compléter le schéma cinématique suivants

Exercice 6: Unité de bouchage


correction

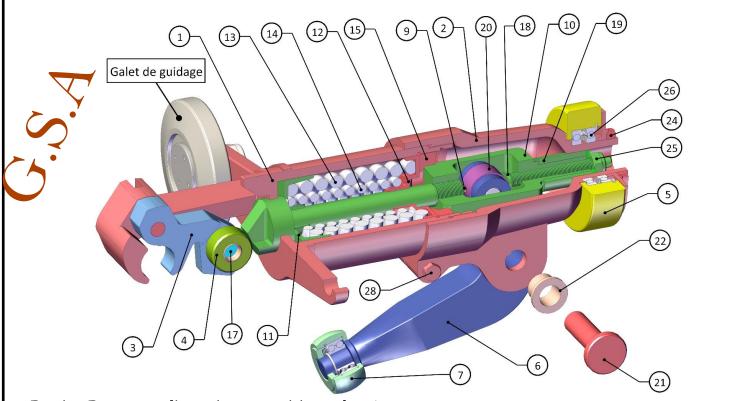
3.5.


Analyse Technologique

Etude des liaisons

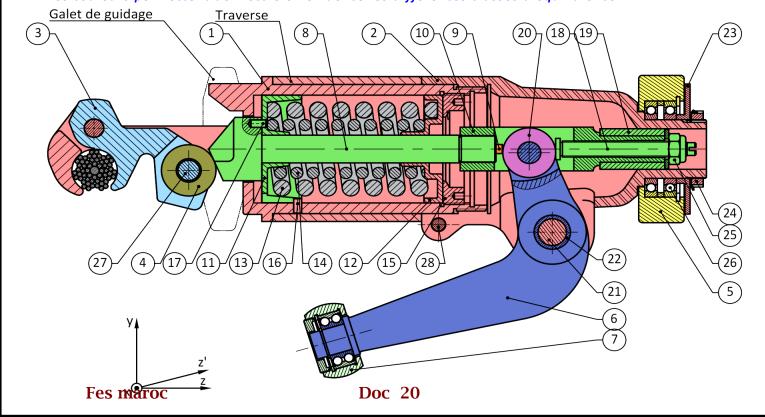
a) Compléter le tableau des liaisons:

b)Compléter le schéma cinématique suivants


Exercice 7: <u>La pince du système d'attache</u>

المادة علوم المهندس العلوم الرياضية (ب) 2 2hac SM 2

Dessin 3D au ¼ enlevé d'une pince en position embrayée :

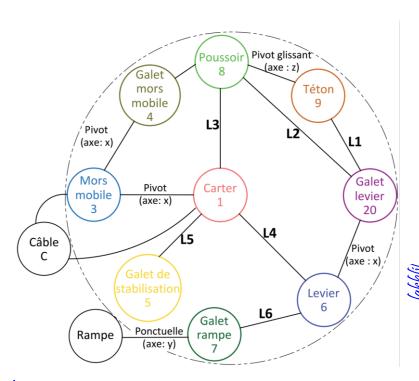

NB: les couleurs permettent de mettre en évidence les différentes classes d'équivalence. Fonctionnement de la pince:

Une pince débrayable est composée de deux ressorts de serrage coaxiaux (13) et (14). Ils exercent un effort permanent sur le poussoir (8), qui maintient le mors mobile (3) en position fermée. La commande de déverrouillage de la pince s'effectue grâce au levier (6) et à la rampe de débrayage qui comprime les deux ressorts pour libérer le mors mobile (3).

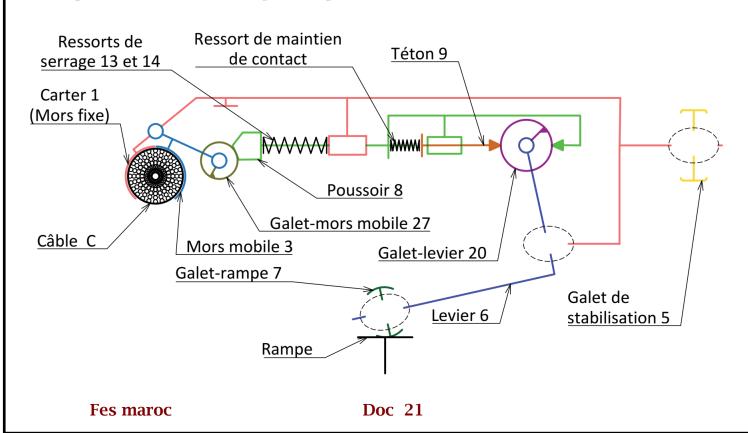
Dessin 2D en coupe d'une pince en position embrayée:

NB: les couleurs permettent de mettre en évidence les différentes classes d'équivalence.

Exercice 7: <u>La pince du système d'attache</u>


المادة علوم المهندس الشعبة العلوم الرياضية (ب) 2 2bac SM 2

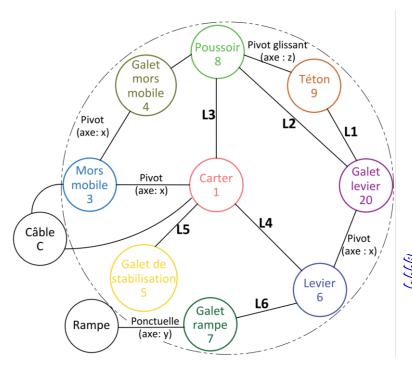
Etude de la structure et du fonctionnement de la pince du système d'attache. A partir deu Document Ressource.


3.5.

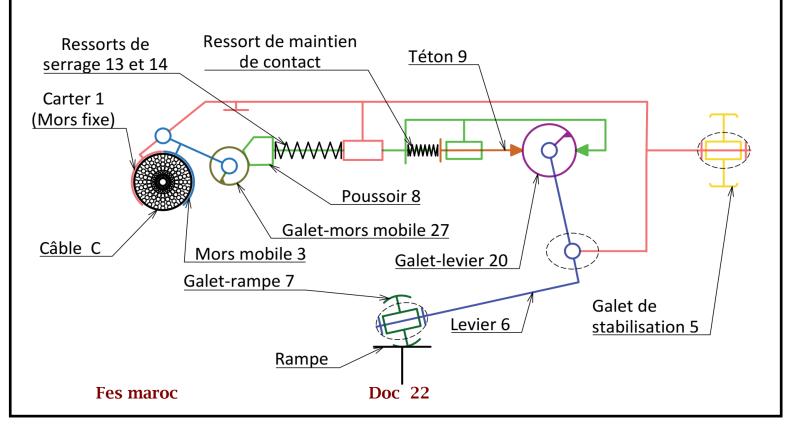
Q.1.Compléter Le tableau des liaisons qui correspond au graphe des liaisons relatif à la pince.

Liaison	Nom	Axe
L1		
L2		
L3		
L4		
L5		
L6		

Q.2. Compléter Le schéma cinématique de la pince.


correction

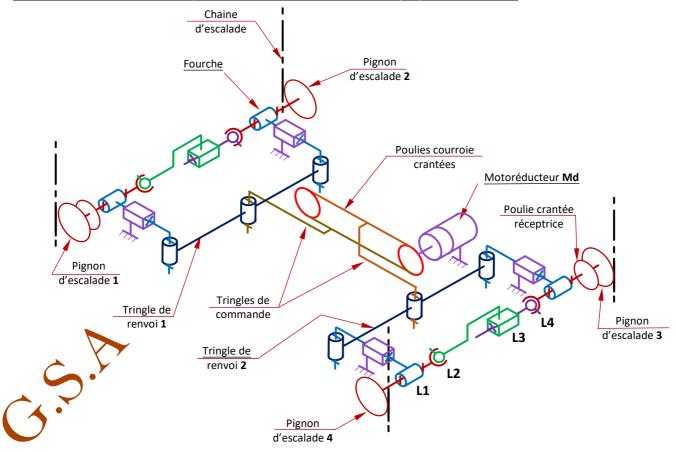
Etude de la structure et du fonctionnement de la pince du système d'attache. A partir deu Document Ressource.



Q.1. Compléter Le tableau des liaisons qui correspond au graphe des liaisons relatif à la pince.

Liaison	Nom	Axe
L1	Ponctuelle	Axe : z
L2	Ponctuelle	Axe : z
L3	Glissière	Axe : z
L4	Pivot	Axe : x
L5	Pivot	Axe : z
L6	Pivot	Axe : z'

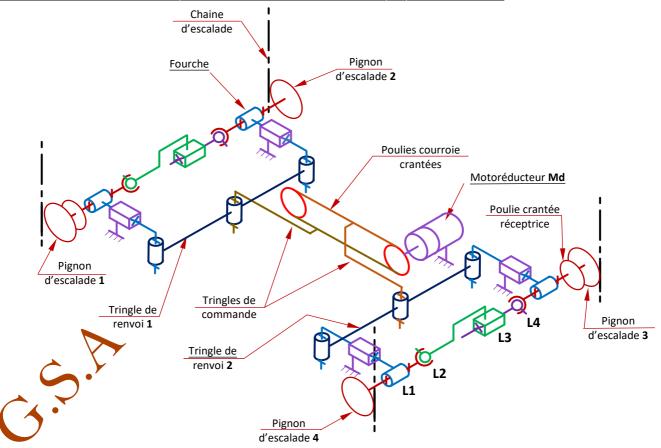
Q.2. Compléter Le schéma cinématique de la pince.



Liaison mécanique

Exercice 8:

Schéma cinématique du module de déploiement des bras rétractables en position déployés


Identifier les liaisons L1, L2, L3 et L4 du schéma cinématique du module de déploiement des bras rétractables en complétant le tableau.

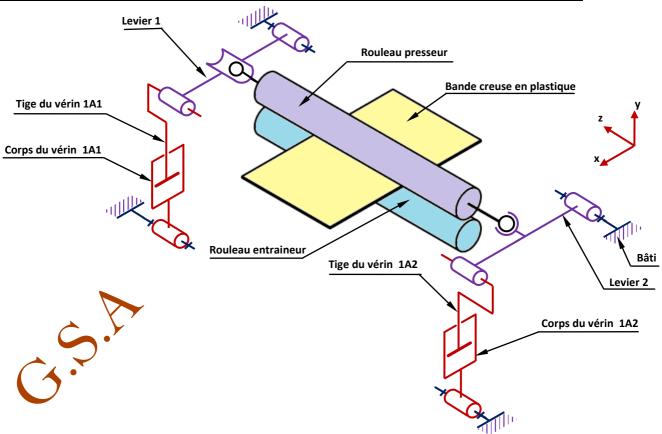
Liaison	Nom de la liaison	Nombre de degrés de liberté
L1		
L2		
L3		
L4		

Exercice 8:

correction

Schéma cinématique du module de déploiement des bras rétractables en position déployés

Identifier les liaisons **L1**, **L2**, **L3** et **L4** du schéma cinématique du module de déploiement des bras rétractables en complétant le tableau.


Liaison	Nom de la liaison	Nombre de degrés de liberté
L1	Pivot	1
L2	Rotule à doit	2
L3	Glissière	1
L4	Rotule à doit	2

Les liaisons mécaniques

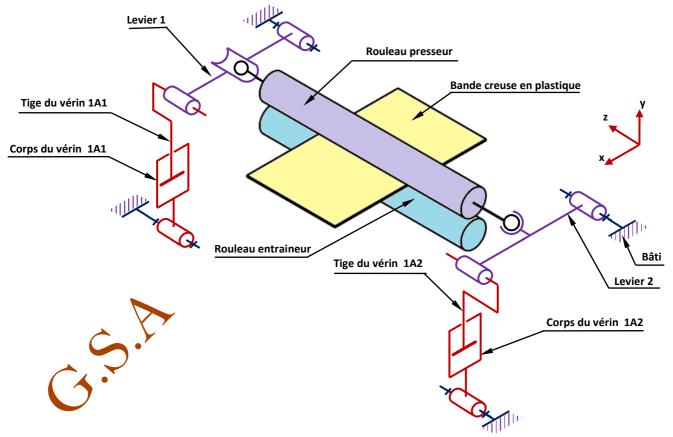
المادة علوم المهندس الشعبة العلوم الرياضية (ب) 2hac SM

Exercice 9:

Schéma cinématique du système de réglage de la hauteur entre le rouleau entraineur et le rouleau presseur

Identifier les liaisons du système de réglage de la hauteur entre le rouleau entraineur et le rouleau presseur en complétant le tableau par les noms des liaisons et par des croix « X » indiquant les degrés de liberté.

Liaison entre	Nom de la liaison	Degrés de liberté						
Liaison entre	Nom de la naison	Tx	Ту	Tz	Rx	Ry	Rz	
Le levier 2 et le bâti								
Le levier 2 et la tige du vérin 1A2								
Le levier 2 et le rouleau presseur								
Le levier 1 et le rouleau presseur								


المسدس وم الرياضية (ب) Les liaisons mécaniques

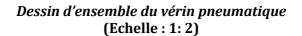
المادة علوم المهندس العلوم الرياضية (ب) علوم الرياضية (ب) على المركز العلى العلى

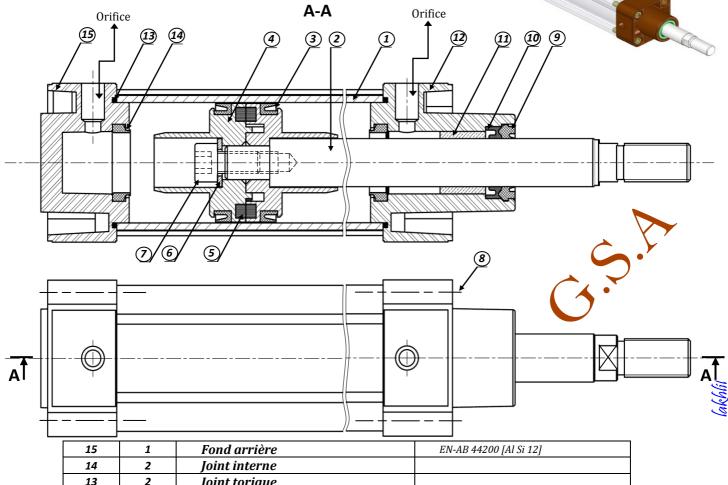
Exercice 9:

correction

Schéma cinématique du système de réglage de la hauteur entre le rouleau entraineur et le rouleau presseur

(Mettre une Croix « X » dans la case convenable).

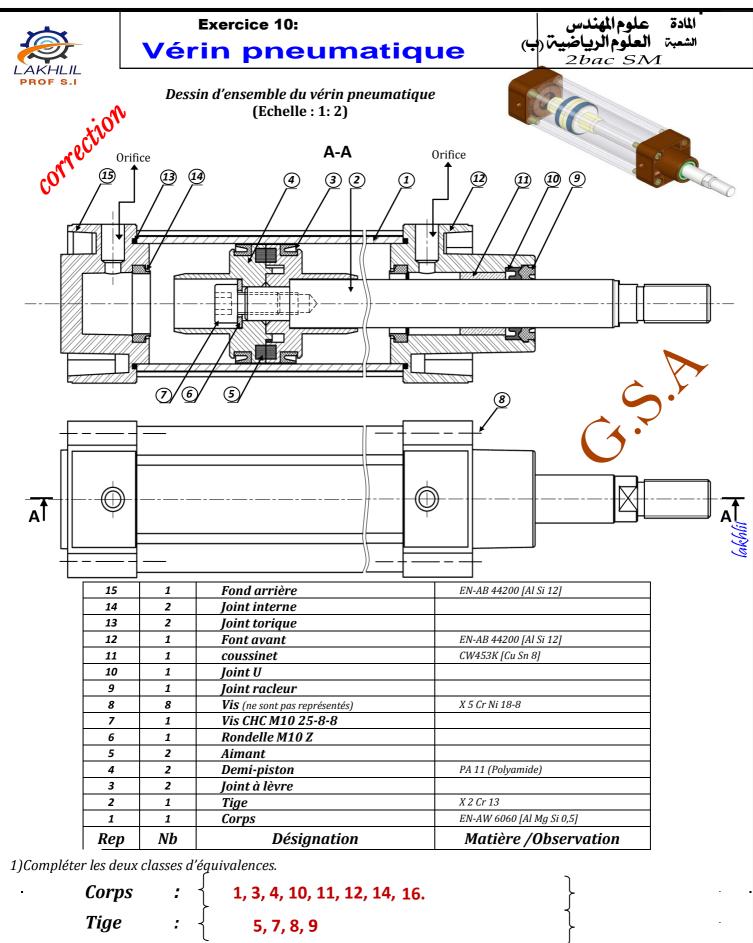

Liaison entre	Nom de la liaison	Degrés de liberté						
Lidison entre	Nom de la maison	Tx	Ту	Tz	Rx	Ry	Rz	
Le levier 2 et le bâti	Pivot						X	
Le levier 2 et la tige du vérin 1A2	Pivot glissant			X			X	
Le levier 2 et le rouleau presseur	Rotule				X	X	X	
Le levier 1 et le rouleau presseur	Linéaire annulaire			X	X	X	X	



Exercice 10:

Vérin pneumatique

المادة علوم المهندس الشعبة العلوم الرياضية (ب) 2hac SM



Rep	Nb	Désignation	Matière /Observation
1	1	Corps	EN-AW 6060 [Al Mg Si 0,5]
2	1	Tige	X 2 Cr 13
3	2	Joint à lèvre	
4	2	Demi-piston	PA 11 (Polyamide)
5	2	Aimant	
6	1	Rondelle M10 Z	
7	1	Vis CHC M10 25-8-8	
8	8	Vis (ne sont pas représentés)	X 5 Cr Ni 18-8
9	1	Joint racleur	
10	1	Joint U	
11	1	coussinet	CW453K [Cu Sn 8]
12	1	Font avant	EN-AB 44200 [Al Si 12]
13	2	Joint torique	
14	2	Joint interne	
15	1	Fond arrière	EN-AB 44200 [Al Si 12]

1)Compléter les deux classes d'équivalences.

2) Compléter Le tableau des liaisons.

Liaison entre	Nom	Symbole
Tige/Corps		
Demi-piston/Tige	_	
Fes maroc	Doc	27

2) Compléter Le tableau des liaisons.

Liaison entre	Nom	Symbole	/
Tige/Corps	pivot glissant	ou ou	
Demi-piston/Tige	Encatrement		
Fes maroc	Doc 28		